Skip to main content

Advertisement

Log in

Structural basis of metal hypersensitivity

  • Immunology in Colorado
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Metal hypersensitivity is a common immune disorder. Human immune systems mount the allergic attacks on metal ions through skin contacts, lung inhalation and metal-containing artificial body implants. The consequences can be simple annoyances to life-threatening systemic illness. Allergic hyper-reactivities to nickel (Ni) and beryllium (Be) are the best-studied human metal hypersensitivities. Ni-contact dermatitis affects 10 % of the human population, whereas Be compounds are the culprits of chronic Be disease (CBD). αβ T cells (T cells) play a crucial role in these hypersensitivity reactions. Metal ions work as haptens and bind to the surface of major histocompatibility complex (MHC) and peptide complex. This modifies the binding surface of MHC and triggers the immune response of T cells. Metal-specific αβ T cell receptors (TCRs) are usually MHC restricted, especially MHC class II (MHCII) restricted. Numerous models have been proposed, yet the mechanisms and molecular basis of metal hypersensitivity remain elusive. Recently, we determined the crystal structures of the Ni and Be presenting human MHCII molecules, HLA-DR52c (DRA*0101, DRB3*0301) and HLA-DP2 (DPA1*0103, DPB1*0201). These structures revealed unusual features of MHCII molecules and shed light on how metal ions are recognized by T cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Budinger L, Hertl M. Immunologic mechanisms in hypersensitivity reactions to metal ions: an overview. Allergy. 2000;55(2):108–15.

    Article  PubMed  CAS  Google Scholar 

  2. Schiraldi M, Monestier M. How can a chemical element elicit complex immunopathology? Lessons from mercury-induced autoimmunity. Trends Immunol. 2009;30(10):502–9.

    Google Scholar 

  3. Vas J, Monestier M. Immunology of mercury. Ann N Y Acad Sci. 2008;1143:240–67.

    Article  PubMed  CAS  Google Scholar 

  4. Rowley B, Monestier M. Mechanisms of heavy metal-induced autoimmunity. Mol Immunol. 2005;42(7):833–8.

    Article  PubMed  CAS  Google Scholar 

  5. Li H, Llera A, Malchiodi EL, Mariuzza RA. The structural basis of T cell activation by superantigens. Annu Rev Immunol. 1999;17:435–66.

    Article  PubMed  CAS  Google Scholar 

  6. Papageorgiou AC, Baker MD, McLeod JD, Goda SK, Manzotti CN, Sansom DM, et al. Identification of a secondary zinc-binding site in staphylococcal enterotoxin C2. Implications for superantigen recognition. J Biol Chem. 2004;279(2):1297–303.

    Article  PubMed  CAS  Google Scholar 

  7. Li H, Zhao Y, Guo Y, Li Z, Eisele L, Mourad W. Zinc induces dimerization of the class II major histocompatibility complex molecule that leads to cooperative binding to a superantigen. J Biol Chem. 2007;282(9):5991–6000.

    Article  PubMed  CAS  Google Scholar 

  8. Yu M, Lee WW, Tomar D, Pryshchep S, Czesnikiewicz-Guzik M, Lamar DL, et al. Regulation of T cell receptor signaling by activation-induced zinc influx. J Exp Med. 2011;208(4):775–85.

    Article  PubMed  CAS  Google Scholar 

  9. Bordon Y. T cell signalling: heavy metal rocks T cells. Nat Rev Immunol. 2011;11(5):300–1.

    Article  PubMed  Google Scholar 

  10. Anthony TJ, Goon CLG. Metal allergy in Singapore. Contact Dermatitis. 2005;52(3):130–2.

    Article  Google Scholar 

  11. Loh J, Fraser J. Metal-derivatized major histocompatibility complex: zeroing in on contact hypersensitivity. J Exp Med. 2003;197(5):549–52.

    Article  PubMed  CAS  Google Scholar 

  12. Büdinger MH, Hertl M. Immunologic mechanisms in hypersensitivity reactions to metal ions: an overview. Allergy. 2000;55(2):108–15.

    Article  PubMed  Google Scholar 

  13. Militello G, Jacob SE, Crawford GH. Allergic contact dermatitis in children. Curr Opin Pediatr. 2006;18(4):385–90.

    Article  PubMed  Google Scholar 

  14. Hogeling M, Pratt M. Allergic contact dermatitis in children: the Ottawa hospital patch-testing clinic experience, 1996 to 2006. Dermatitis. 2008;19(2):86–9.

    PubMed  CAS  Google Scholar 

  15. McGinley EL, Moran GP, Fleming GJ. Base-metal dental casting alloy biocompatibility assessment using a human-derived three-dimensional oral mucosal model. Acta Biomater. 2012;8(1):432–8.

    Article  PubMed  CAS  Google Scholar 

  16. Fors R, Persson M, Bergstrom E, Stenlund H, Stymne B, Stenberg B. Lifestyle and nickel allergy in a Swedish adolescent population: effects of piercing, tattooing and orthodontic appliances. Acta Derm Venereol. 2012 [Epub ahead of print].

  17. Vollmer J, Weltzien HU, Gamerdinger K, Lang S, Choleva Y, Moulon C. Antigen contacts by Ni-reactive TCR: typical alphass chain cooperation versus alpha chain-dominated specificity. Int Immunol. 2000;12(12):1723–31.

    Article  PubMed  CAS  Google Scholar 

  18. Fontenot AP, Falta MT, Freed BM, Newman LS, Kotzin BL. Identification of pathogenic T cells in patients with beryllium-induced lung disease. J Immunol. 1999;163(2):1019–26.

    PubMed  CAS  Google Scholar 

  19. Moulon C, Vollmer J, Weltzien HU. Characterization of processing requirements and metal cross-reactivities in T cell clones from patients with allergic contact dermatitis to nickel. Eur J Immunol. 1995;25(12):3308–15.

    Article  PubMed  CAS  Google Scholar 

  20. Romagnoli P, Labhardt AM, Sinigaglia F. Selective interaction of Ni with an MHC-bound peptide. EMBO J. 1991;10(6):1303–6.

    PubMed  CAS  Google Scholar 

  21. Vollmer J, Weltzien HU, Moulon C. TCR reactivity in human nickel allergy indicates contacts with complementarity-determining region 3 but excludes superantigen-like recognition. J Immunol. 1999;163(5):2723–31.

    PubMed  CAS  Google Scholar 

  22. Lu L, Vollmer J, Moulon C, Weltzien HU, Marrack P, Kappler J. Components of the ligand for a Ni++ reactive human T cell clone. J Exp Med. 2003;197(5):567–74.

    Article  PubMed  CAS  Google Scholar 

  23. Freiman DG, Hardy HL. Beryllium disease: the relation of pulmonary pathology to the clinical course and prognosis based on a study of 130 cases from the U.S. Beryllium case registry. Hum Pathol. 1970;1:25–44.

    Article  PubMed  CAS  Google Scholar 

  24. Kriebel D, Brain JD, Sprince NL, Kazemi H. The pulmonary toxicity of beryllium. Am Rev Respir Dis. 1988;137:464–73.

    PubMed  CAS  Google Scholar 

  25. Kreiss K, Mroz MM, Newman LS, Martyny J, Zhen B. Machining risk of beryllium disease and sensitization with median exposures below 2 μg/m3. Am J Ind Med. 1996;30:16–25.

    Article  PubMed  CAS  Google Scholar 

  26. Kreiss K, Mroz MM, Zhen B, Martyny JW, Newman LS. Epidemiology of beryllium sensitization and disease in nuclear workers. Am Rev Respir Dis. 1993;148:985–91.

    Article  PubMed  CAS  Google Scholar 

  27. Kreiss K, Wasserman S, Mroz MM, Newman LS. Beryllium disease screening in the ceramics industry: blood test performance and exposure-disease relations. J Occup Med. 1993;35:267–74.

    PubMed  CAS  Google Scholar 

  28. Van Dyke MV, Martyny JW, Mroz MM, Silveira LJ, Strand M, Cragle DL, et al. Exposure and genetics increase risk of beryllium sensitisation and chronic beryllium disease in the nuclear weapons industry. Occup Environ Med. 2011;68(11):842–8.

    Article  PubMed  Google Scholar 

  29. Amicosante M, Fontenot AP. T cell recognition in chronic beryllium disease. Clin Immunol. 2006;121(2):134–43.

    Article  PubMed  CAS  Google Scholar 

  30. Fontenot AP, Maier LA. Genetic susceptibility and immune-mediated destruction in beryllium-induced disease. Trends Immunol. 2005;26(10):543–9.

    Article  PubMed  CAS  Google Scholar 

  31. Fontenot AP, Kotzin BL, Comment CE, Newman LS. Expansions of T-cell subsets expressing particular T-cell receptor variable regions in chronic beryllium disease. Am J Respir Cell Mol Biol. 1998;18(4):581–9.

    PubMed  CAS  Google Scholar 

  32. Fontenot AP, Palmer BE, Sullivan AK, Joslin FG, Wilson CC, Maier LA, et al. Frequency of beryllium-specific, central memory CD4+ T cells in blood determines proliferative response. J Clin Invest. 2005;115(10):2886–93.

    Article  PubMed  CAS  Google Scholar 

  33. Saltini C, Winestock K, Kirby M, Pinkston P, Crystal RG. Maintenance of alveolitis in patients with chronic beryllium disease by beryllium-specific helper T cells. N Engl J Med. 1989;320:1103–9.

    Article  PubMed  CAS  Google Scholar 

  34. Richeldi L, Sorrentino R, Saltini C. HLA-DPB1 glutamate 69: a genetic marker of beryllium disease. Science. 1993;262:242–4.

    Article  PubMed  CAS  Google Scholar 

  35. Sawyer RT, Maier LA. Chronic beryllium disease: an updated model interaction between innate and acquired immunity. Biometals. 2011;24(1):1–17.

    Article  PubMed  CAS  Google Scholar 

  36. Verreck FAW, van de Poel A, Drijfhout JW, Amons R, Coligan JE, Koning F. Natural peptides isolated from Gly86/Val86-containing variants of HLA-DR1, -DR11, -DR13, and -DR52. Immunogenetics. 1996;43(6):392–7.

    Article  PubMed  CAS  Google Scholar 

  37. Dai S, Crawford F, Marrack P, Kappler JW. The structure of HLA-DR52c: comparison to other HLA-DRB3 alleles. Proc Natl Acad Sci U S A. 2008;105(33):11893–7.

    Article  PubMed  CAS  Google Scholar 

  38. Fremont DH, Dai S, Chiang H, Crawford F, Marrack P, Kappler J. Structural basis of cytochrome c presentation by IE(k). J Exp Med. 2002;195(8):1043–52.

    Article  PubMed  CAS  Google Scholar 

  39. Carrington PE, Chivers PT, Al-Mjeni F, Sauer RT, Maroney MJ. Nickel coordination is regulated by the DNA-bound state of NikR. Nat Struct Biol. 2003;10(2):126–30.

    Article  PubMed  CAS  Google Scholar 

  40. Painter CA, Cruz A, Lopez GE, Stern LJ, Zavala-Ruiz Z. Model for the peptide-free conformation of class II MHC proteins. PLoS ONE. 2008;3(6):e2403.

    Article  PubMed  Google Scholar 

  41. Carven GJ, Chitta S, Hilgert I, Rushe MM, Baggio RF, Palmer M, et al. Monoclonal antibodies specific for the empty conformation of HLA-DR1 reveal aspects of the conformational change associated with peptide binding. J Biol Chem. 2004;279(16):16561–70.

    Article  PubMed  CAS  Google Scholar 

  42. Diaz G, Canas B, Vazquez J, Nombela C, Arroyo J. Characterization of natural peptide ligands from HLA-DP2: new insights into HLA-DP peptide-binding motifs. Immunogenetics. 2005;56(10):754–9.

    Article  PubMed  CAS  Google Scholar 

  43. Dai S, Murphy GA, Crawford F, Mack DG, Falta MT, Marrack P, et al. Crystal structure of HLA-DP2 and implications for chronic beryllium disease. Proc Natl Acad Sci U S A. 2010;107(16):7425–30.

    Article  PubMed  CAS  Google Scholar 

  44. Stern LJ, Brown JH, Jardetzky TS, Gorga JC, Urban RG, Strominger JL, et al. Crystal structure of the human class II MHC protein HLA-DR1 complexed with an influenza virus peptide. Nature. 1994;368(6468):215–21.

    Article  PubMed  CAS  Google Scholar 

  45. Berretta F, Butler RH, Diaz G, Sanarico N, Arroyo J, Fraziano M, et al. Detailed analysis of the effects of Glu/Lys beta69 human leukocyte antigen-DP polymorphism on peptide-binding specificity. Tissue Antigens. 2003;62(6):459–71.

    Article  PubMed  CAS  Google Scholar 

  46. Cho H, Wang W, Kim R, Yokota H, Damo S, Kim SH, et al. BeF3 acts as a phosphate analog in proteins phosphorylated on aspartate: structure of a BeF3 complex with phosphoserine phosphatase. Proc Natl Acad Sci U S A. 2001;98(15):8525–30.

    Article  PubMed  CAS  Google Scholar 

  47. Kapsenberg ML, Bos JD, Wierenga EA. T cells in allergic responses to haptens and proteins. Springer Semin Immunopathol. 1992;13(3–4):303–14.

    PubMed  CAS  Google Scholar 

  48. Ortmann B, Martin S, von Bonin A, Schiltz E, Hoschutzky H, Weltzien HU. Synthetic peptides anchor T cell-specific TNP epitopes to MHC antigens. J Immunol. 1992;148(5):1445–50.

    PubMed  CAS  Google Scholar 

  49. Preckel T, Breloer M, Kohler H, von Bonin A, Weltzien HU. Partial agonism and independent modulation of T cell receptor and CD8 in hapten-specific cytotoxic T cells. Eur J Immunol. 1998;28(11):3706–18.

    Article  PubMed  CAS  Google Scholar 

  50. Hughes EA, Kinnel G, Wickerham C, Atkeson B, Owen JA. Fine specificity analysis indicates that the primary and secondary fluorescein-specific cytotoxic T cell receptor repertoires are indistinguishable. Immunol Cell Biol. 1995;73(2):153–7.

    Article  PubMed  CAS  Google Scholar 

  51. Pichler WJ, Yawalkar N. Allergic reactions to drugs: involvement of T cells. Thorax. 2000;55(Suppl 2):S61–5.

    Article  PubMed  Google Scholar 

  52. Sinigaglia F. The molecular basis of metal recognition by T cells. J Invest Dermatol. 1994;102(4):398–401.

    Article  PubMed  CAS  Google Scholar 

  53. Maier LA, McGrath DS, Sato H, Lympany P, Welsh K, Du Bois R, et al. Influence of MHC class II in susceptibility to beryllium sensitization and chronic beryllium disease. J Immunol. 2003;171(12):6910–8.

    PubMed  CAS  Google Scholar 

  54. Fontenot AP, Torres M, Marshall WH, Newman LS, Kotzin BL. Beryllium presentation to CD4+T cells underlies disease-susceptibility HLA-DP alleles in chronic beryllium disease. Proc Natl Acad Sci U S A. 2000;97(23):12717–22.

    Article  PubMed  CAS  Google Scholar 

  55. Hashizume H, Seo N, Ito T, Takigawa M, Yagi H. Promiscuous interaction between gold-specific T cells and APCs in gold allergy. J Immunol. 2008;181(11):8096–102.

    PubMed  CAS  Google Scholar 

  56. Emtestam L, Zetterquist H, Olerup O. HLA-DR, -DQ and -DP alleles in nickel, chromium, and/or cobalt-sensitive individuals: genomic analysis based on restriction fragment length polymorphisms. J Invest Dermatol. 1993;100(3):271–4.

    Article  PubMed  CAS  Google Scholar 

  57. Thierse HJ, Gamerdinger K, Junkes C, Guerreiro N, Weltzien HU. T cell receptor (TCR) interaction with haptens: metal ions as non-classical haptens. Toxicology. 2005;209(2):101–7.

    Article  PubMed  CAS  Google Scholar 

  58. Marrack P, Scott-Browne JP, Dai S, Gapin L, Kappler JW. Evolutionarily conserved amino acids that control TCR-MHC interaction. Annu Rev Immunol. 2008;26:171–203.

    Article  PubMed  CAS  Google Scholar 

  59. Rudolph MG, Stanfield RL, Wilson IA. How TCRs bind MHCs, peptides, and coreceptors. Annu Rev Immunol. 2006;24:419–66.

    Article  PubMed  CAS  Google Scholar 

  60. Yin L, Huseby E, Scott-Browne J, Rubtsova K, Pinilla C, Crawford F, et al. A single T cell receptor bound to major histocompatibility complex class I and class II glycoproteins reveals switchable TCR conformers. Immunity. 2011;35(1):23–33.

    Article  PubMed  CAS  Google Scholar 

  61. Dai S, Huseby ES, Rubtsova K, Scott-Browne J, Crawford F, Macdonald WA, et al. Crossreactive T Cells spotlight the germline rules for alphabeta T cell-receptor interactions with MHC molecules. Immunity. 2008;28(3):324–34.

    Article  PubMed  CAS  Google Scholar 

  62. Feng D, Bond CJ, Ely LK, Maynard J, Garcia KC. Structural evidence for a germline-encoded T cell receptor-major histocompatibility complex interaction ‘codon’. Nat Immunol. 2007;8(9):975–83.

    Article  PubMed  CAS  Google Scholar 

  63. De Wall SL, Painter C, Stone JD, Bandaranayake R, Wiley DC, Mitchison TJ, et al. Noble metals strip peptides from class II MHC proteins. Nat Chem Biol. 2006;2(4):197–201.

    Article  PubMed  Google Scholar 

  64. Gamerdinger K, Moulon C, Karp DR, Van Bergen J, Koning F, Wild D, et al. A new type of metal recognition by human T cells: contact residues for peptide-independent bridging of T cell receptor and major histocompatibility complex by nickel. J Exp Med. 2003;197(10):1345–53.

    Article  PubMed  CAS  Google Scholar 

  65. Griem P, Panthel K, Kalbacher H, Gleichmann E. Alteration of a model antigen by Au(III) leads to T cell sensitization to cryptic peptides. Eur J Immunol. 1996;26(2):279–87.

    Article  PubMed  CAS  Google Scholar 

  66. Bowerman NA, Falta MT, Mack DG, Kappler JW, Fontenot AP. Mutagenesis of beryllium-specific TCRs suggests an unusual binding topology for antigen recognition. J Immunol. 2011;187(7):3694–703.

    Article  PubMed  CAS  Google Scholar 

  67. Adams JJ, Narayanan S, Liu B, Birnbaum ME, Kruse AC, Bowerman NA, et al. T cell receptor signaling is limited by docking geometry to peptide-major histocompatibility complex. Immunity. 2011;35(5):681–93.

    Article  PubMed  CAS  Google Scholar 

  68. Maynard J, Petersson K, Wilson DH, Adams EJ, Blondelle SE, Boulanger MJ, et al. Structure of an autoimmune T cell receptor complexed with class II peptide-MHC: insights into MHC bias and antigen specificity. Immunity. 2005;22(1):81–92.

    PubMed  CAS  Google Scholar 

  69. Li Y, Huang Y, Lue J, Quandt JA, Martin R, Mariuzza RA. Structure of a human autoimmune TCR bound to a myelin basic protein self-peptide and a multiple sclerosis-associated MHC class II molecule. EMBO J. 2005;24(17):2968–79.

    Article  PubMed  CAS  Google Scholar 

  70. Hahn M, Nicholson MJ, Pyrdol J, Wucherpfennig KW. Unconventional topology of self peptide-major histocompatibility complex binding by a human autoimmune T cell receptor. Nat Immunol. 2005;6(5):490–6.

    Article  PubMed  CAS  Google Scholar 

  71. Nicholson MJ, Hahn M, Wucherpfennig KW. Unusual features of self-peptide/MHC binding by autoimmune T cell receptors. Immunity. 2005;23(4):351–60.

    Article  PubMed  CAS  Google Scholar 

  72. Deng L, Mariuzza RA. Recognition of self-peptide-MHC complexes by autoimmune T-cell receptors. Trends Biochem Sci. 2007;32(11):500–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by NIH KL2 TR000156 and the Boettcher Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaodong Dai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Dai, S. Structural basis of metal hypersensitivity. Immunol Res 55, 83–90 (2013). https://doi.org/10.1007/s12026-012-8351-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-012-8351-1

Keywords

Navigation