Skip to main content

Advertisement

Log in

Emerging Technologies for Recovery of Value-Added Components from Olive Leaves and Their Applications in Food/Feed Industries

  • Review
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Olive leaves are the most abundant agricultural waste source rich in polyphenolics. Due to the numerous health benefits associated with these compounds, the interest in recovering polyphenols from olive leaves has increased in the scientific community over the last decade. Recent studies have focused on improved extraction techniques and processing methods that are most suited for agro-biological industries involved in the development of nutraceutical and functional products. The major problems in olive leaves processing include bitter taste and the low stability of various phenolic compounds. Oleuropein and hydroxytyrosol are the most important phenolic compounds extracted from olive leaves. The present review highlights the importance of olive leaves, their composition, preparation methods, major phenolic compounds, and commercial applications. This review article focuses on integrating studies on olive leaf extract (OLE) pertinent to nutrition, health, and beauty. The different board categories of delivery systems available for the encapsulation of OLE are given. These novel delivery systems could improve fortification, supplementation, and dietary diversification in food and pharmaceutical products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Abaza, L., Youssef, N. B., Manai, H., Haddada, F. M., Methenni, K., & Zarrouk, M. (2011). Chétoui olive leaf extracts: influence of the solvent type on phenolics and antioxidant activities. Grasas y Aceites, 62(1), 96–104.

    Article  CAS  Google Scholar 

  • Achat, S., Tomao, V., Madani, K., Chibane, M., Elmaataoui, M., Dangles, O., & Chemat, F. (2012). Direct enrichment of olive oil in oleuropein by ultrasound-assisted maceration at laboratory and pilot plant scale. Ultrasonics - Sonochemistry, 19(4), 777–786.

    Article  CAS  Google Scholar 

  • Acquaviva, R., Di Giacomo, C., Sorrenti, V., Galvano, F., Santangelo, R., Cardile, V., et al. (2012). Antiproliferative effect of oleuropein in prostate cell lines. International Journal of Oncology, 41(1), 31–38.

    CAS  Google Scholar 

  • Afaneh, I., Yateem, H., & Al-rimawi, F. (2015). Effect of olive leaves drying on the content of oleuropein. American Journal of Analytical Chemistry, 6(3), 246–252.

    Article  CAS  Google Scholar 

  • Ahmad-Qasem, M. H., Cánovas, J., Barrajón-Catalán, E., Micol, V., Andrés, J., & García-Pérez, J. V. (2013). Kinetic and compositional study of phenolic extraction from olive leaves (var. Serrana) by using power ultrasound. Innovative Food Science and Emerging Technologies, 17, 120–129.

    Article  CAS  Google Scholar 

  • Al-Attar, A. M., & Abu Zeid, I. M. (2013). Effect of tea (Camellia sinensis) and olive (Olea europaea L.) leaves extracts on male mice exposed to diazinon. BioMed Research International. doi:10.1155/2013/461415.

    Google Scholar 

  • Al-Azzawie, H. F., & Alhamdani, M. S. S. (2006). Hypoglycemic and antioxidant effect of oleuropein in alloxan-diabetic rabbits. Life Sciences, 78(12), 1371–1377.

    Article  CAS  Google Scholar 

  • Alirezaei, M., Kheradmand, A., Heydari, R., Tanideh, N., Neamati, S., & Rashidipour, M. (2012). Oleuropein protects against ethanol-induced oxidative stress and modulates sperm quality in the rat testis. Mediterranean Journal of Nutrition and Metabolism, 5(3), 205–211.

    Article  Google Scholar 

  • Aluyor, E., & Ori-Jesu, M. (2008). The use of antioxidants in vegetable oils—a review. African Journal of Biotechnology, 7(25), 4836–4842.

    CAS  Google Scholar 

  • Andreadou, I., Iliodromitis, E. K., Mikros, E., Constantinou, M., Agalias, A., Magiatis, P., et al. (2006). The olive constituent oleuropein exhibits anti-ischemic, antioxidative, and hypolipidemic effects in anesthetized rabbits. The Journal of Nutrition, 136(8), 2213–2219.

    CAS  Google Scholar 

  • Andreadou, I., Sigala, F., Iliodromitis, E. K., & Papaefthimiou, M. (2007). Acute doxorubicin cardiotoxicity is successfully treated with the phytochemical oleuropein through suppression of oxidative and nitrosative stress. Journal of Molecular and Cellular Cardiology, 42, 549–558.

    Article  CAS  Google Scholar 

  • Anter, J., Fernández-Bedmar, Z., Villatoro-Pulido, M., Demyda-Peyras, S., Moreno-Millán, M., Alonso-Moraga, Á., et al. (2011). A pilot study on the DNA-protective, cytotoxic, and apoptosis-inducing properties of olive-leaf extracts. Mutation Research—Genetic Toxicology and Environmental Mutagenesis, 723(2), 165–170.

    Article  CAS  Google Scholar 

  • Aouidi, F., Dupuy, N., Artaud, J., Roussos, S., Msallem, M., Perraud-Gaime, I., & Hamdi, M. (2012). Discrimination of five Tunisian cultivars by mid infraRed spectroscopy combined with chemometric analyses of olive Olea europaea leaves. Food Chemistry, 131(1), 360–366.

    Article  CAS  Google Scholar 

  • Apostolakis, A., Grigorakis, S., & Makris, D. P. (2014). Optimisation and comparative kinetics study of polyphenol extraction from olive leaves (Olea europaea) using heated water/glycerol mixtures. Separation and Purification Technology, 128, 89–95.

    Article  CAS  Google Scholar 

  • Awwad, A. M., Salem, N. M., & Abdeen, A. O. (2012). Biosynthesis of silver nanoparticles using Olea europaea leaves extract and its antibacterial activity. Nanoscience and Nanotechnology, 2(6), 164–170.

    Article  CAS  Google Scholar 

  • Barbaro, B., Toietta, G., Maggio, R., Arciello, M., Tarocchi, M., Galli, A., & Balsano, C. (2014). Effects of the olive-derived polyphenol oleuropein on human health. International Journal of Molecular Sciences, 15, 18508–18524.

    Article  CAS  Google Scholar 

  • Belščak-Cvitanović, A., Stojanović, R., Manojlović, V., Komes, D., Cindrić, I. J., Nedović, V., & Bugarski, B. (2011). Encapsulation of polyphenolic antioxidants from medicinal plant extracts in alginate–chitosan system enhanced with ascorbic acid by electrostatic extrusion. Food Research International, 44(4), 1094–1101.

    Article  CAS  Google Scholar 

  • Benavente-García, O., Castillo, J., Lorente, J., Ortuño, A., & Del Rio, J. A. (2000). Antioxidant activity of phenolics extracted from Olea europaea L. leaves. Food Chemistry, 68, 457–462.

    Article  Google Scholar 

  • Botsoglou, E., Govaris, A., Ambrosiadis, I., & Fletouris, D. (2012a). Lipid and protein oxidation of α-linolenic acid-enriched pork during refrigerated storage as influenced by diet supplementation with olive leaves (Olea europea L.) or α-tocopheryl acetate. Meat Science, 92(4), 525–532.

    Article  CAS  Google Scholar 

  • Botsoglou, E., Govaris, A., Ambrosiadis, I., Fletouris, D., & Papageorgiou, G. (2014). Effect of olive leaf (Olea europea L.) extracts on protein and lipid oxidation in cooked pork meat patties enriched with n-3 fatty acids. Journal of the Science of Food and Agriculture, 94(2), 227–234.

    Article  CAS  Google Scholar 

  • Botsoglou, E., Govaris, A., Fletouris, D., & Botsoglou, N. (2012b). Lipid oxidation of stored eggs enriched with very long chain n-3 fatty acids, as affected by dietary olive leaves (Olea europea L.) or α-tocopheryl acetate supplementation. Food Chemistry, 134(2), 1059–1068.

    Article  CAS  Google Scholar 

  • Bouallagui, Z., Han, J., Isoda, H., & Sayadi, S. (2011). Hydroxytyrosol rich extract from olive leaves modulates cell cycle progression in MCF-7 human breast cancer cells. Food and Chemical Toxicology, 49(1), 179–184.

    Article  CAS  Google Scholar 

  • Bouaziz, M., Feki, I., Ayadi, M., Jemai, H., & Sayadi, S. (2010). Stability of refined olive oil and olive-pomace oil added by phenolic compounds from olive leaves. European Journal of Lipid Science and Technology, 112(8), 894–905.

    Article  CAS  Google Scholar 

  • Bouaziz, M., Fki, I., Jemai, H., Ayadi, M., & Sayadi, S. (2008). Effect of storage on refined and husk olive oils composition: stabilization by addition of natural antioxidants from Chemlali olive leaves. Food Chemistry, 108(1), 253–262.

    Article  CAS  Google Scholar 

  • Bouaziz, M., & Sayadi, S. (2005). Isolation and evaluation of antioxidants from leaves of a Tunisian cultivar olive tree. European Journal of Lipid Science and Technology, 107(7–8), 497–504.

    Article  CAS  Google Scholar 

  • Boudhrioua, N., Bahloul, N., Ben Slimen, I., & Kechaou, N. (2009). Comparison on the total phenol contents and the color of fresh and infrared dried olive leaves. Industrial Crops and Products, 29(2–3), 412–419.

    Article  CAS  Google Scholar 

  • Briante, R., Patumi, M., Terenziani, S., Bismuto, E., Febbraio, F., & Nucci, R. (2002). Olea europaea L. leaf extract and derivatives: Antioxidant properties. Journal of Agricultural and Food Chemistry, 50(17), 4934–4940.

    Article  CAS  Google Scholar 

  • Bulotta, S., Corradino, R., Celano, M., Agostino, M. D., Maiuolo, J., Oliverio, M., et al. (2011). Antiproliferative and antioxidant effects on breast cancer cells of oleuropein and its semisynthetic peracetylated derivatives. Food Chemistry, 127(4), 1609–1614.

    Article  CAS  Google Scholar 

  • Cara, C., Ruiz, E., Carvalheiro, F., Moura, P., Ballesteros, I., Castro, E., & Gírio, F. (2012). Production, purification and characterisation of oligosaccharides from olive tree pruning autohydrolysis. Industrial Crops and Products, 40, 225–231.

    Article  CAS  Google Scholar 

  • Cárdeno, A., Sánchez-Hidalgo, M., Rosillo, M. A., & de la Lastra, C. A. (2013). Oleuropein, a secoiridoid derived from olive tree, inhibits the proliferation of human colorectal cancer cell through downregulation of HIF-1α. Nutrition and Cancer, 65(1), 147–156.

    Article  CAS  Google Scholar 

  • Carito, V., Venditti, A., Bianco, A., Ceccanti, M., Serrilli, A. M., Chaldakov, G., et al. (2014). Effects of olive leaf polyphenols on male mouse brain NGF, BDNF and their receptors TrkA, TrkB and p75. Natural Product Research, 28(22), 1970–1984.

    Article  CAS  Google Scholar 

  • Chatzidaki, M. D., Arik, N., Monteil, J., Papadimitriou, V., Leal-Calderon, F., & Xenakis, A. (2015). Microemulsion versus emulsion as effective carrier of hydroxytyrosol. Colloids and Surfaces B: Biointerfaces, 4–9.

  • Cherif, S., Rahal, N., Haouala, M., Hizaoui, B., Dargouth, F., Gueddiche, M., et al. (1996). A clinical trial of a titrated Olea extract in the treatment of essential arterial hypertension. Journal de Pharmacie de Belgique, 51(2), 69–71.

    CAS  Google Scholar 

  • Chiou, A., Salta, F. N., Kalogeropoulos, N., Mylona, A., Ntalla, I., & Andrikopoulos, N. K. (2007). Retention and distribution of polyphenols after pan-frying of French fries in oils enriched with olive leaf extract. Journal of Food Science, 72(8), S574–S584.

    Article  CAS  Google Scholar 

  • Christaki, E., Bonos, E., & Florou-Pan, P. (2011). Effect of dietary supplementation of olive leaves and/or α-tocopheryl acetate on performance and egg quality of laying Japanese quail (Coturnix japonica). Asian Journal of Animal and Veterinary Advances, 6(12), 1241–1248.

    Article  CAS  Google Scholar 

  • Cumaoğlu, A., Rackova, L., Stefek, M., Kartal, M., Maechler, P., & Karasu, Ç. (2011). Effects of olive leaf polyphenols against H2O2 toxicity in insulin secreting β-cells. Biochimica Polonica, 58(1), 45–50.

    Google Scholar 

  • Daccache, A., Lion, C., Sibille, N., Gerard, M., Slomianny, C., Lippens, G., & Cotelle, P. (2011). Oleuropein and derivatives from olives as Tau aggregation inhibitors. Neurochemistry International, 58(6), 700–707.

    Article  CAS  Google Scholar 

  • de Bock, M., Derraik, J. G. B., Brennan, C. M., Biggs, J. B., Morgan, P. E., Hodgkinson, S. C., et al. (2013). Olive (Olea europaea L.) leaf polyphenols improve insulin sensitivity in middle-aged overweight men: a randomized, placebo-controlled, crossover trial. PloS One. doi:10.1371/journal.pone.0057622.

    Google Scholar 

  • De Leonardis, A., Aretini, A., Alfano, G., Macciola, V., & Ranalli, G. (2008). Isolation of a hydroxytyrosol-rich extract from olive leaves (Olea europaea L.) and evaluation of its antioxidant properties and bioactivity. European Food Research and Technology, 226(4), 653–659.

    Article  CAS  Google Scholar 

  • Dekanski, D., Ristić, S., & Mitrović, D. M. (2009). Antioxidant effect of dry olive (Olea europaea L.) leaf extract on ethanol-induced gastric lesions in rats. Mediterranean Journal of Nutrition and Metabolism, 2(3), 205–211.

    Article  Google Scholar 

  • Delgado-Pertíñez, M., Gómez-Cabrera, A., & Garrido, A. (2000). Predicting the nutritive value of the olive leaf (Olea europaea): digestibility and chemical composition and in vitro studies. Animal Feed Science and Technology, 87(3–4), 187–201.

    Article  Google Scholar 

  • Diomede, L., Rigacci, S., Romeo, M., Stefani, M., & Salmona, M. (2013). Oleuropein aglycone protects transgenic C. elegans strains expressing Aβ42 by reducing plaque load and motor deficit. PloS One. doi:10.1371/journal.pone.0058893.

    Google Scholar 

  • Domitrović, R., Jakovac, H., Marchesi, V. V., Šain, I., Romić, Ž., & Rahelić, D. (2012). Preventive and therapeutic effects of oleuropein against carbon tetrachloride-induced liver damage in mice. Pharmacological Research, 65, 451–464.

    Article  CAS  Google Scholar 

  • Eidi, A., Eidi, M., & Darzi, R. (2009). Antidiabetic effect of Olea europaea L. in normal and diabetic rats. Phytotherapy Research, 23, 347–350.

    Article  CAS  Google Scholar 

  • El, S. N., & Karakaya, S. (2009). Olive tree (Olea europaea) leaves: potential beneficial effects on human health. Nutrition, 67(11), 632–638.

    Google Scholar 

  • Elamin, M. H., Daghestani, M. H., Omer, S. A., Elobeid, M. A., Virk, P., Al-olayan, E. M., et al. (2013). Olive oil oleuropein has anti-breast cancer properties with higher efficiency on ER-negative cells. Food and Chemical Toxicology, 53, 310–316.

    Article  CAS  Google Scholar 

  • Erbay, Z., & Icier, F. (2009). Optimization of hot air drying of olive leaves using response surface methodology. Journal of Food Engineering, 91(4), 533–541.

    Article  CAS  Google Scholar 

  • Erbay, Z., & Icier, F. (2011). Energy and exergy analyses on drying of olive leaves (Olea europaea L.) in tray drier. Journal of Food Process Engineering, 34(6), 2105–2123.

    Article  Google Scholar 

  • Esmaeili-Mahani, S., Rezaeezadeh-Roukerd, M., Esmaeilpour, K., Abbasnejad, M., Rasoulian, B., Sheibani, V., et al. (2010). Olive (Olea europaea L.) leaf extract elicits antinociceptive activity, potentiates morphine analgesia and suppresses morphine hyperalgesia in rats. Journal of Ethnopharmacology, 132(1), 200–205.

    Article  Google Scholar 

  • Fang, Z., & Bhandari, B. (2010). Encapsulation of polyphenols—a review. Trends in Food Science & Technology, 21(10), 510–523.

    Article  CAS  Google Scholar 

  • FAOSTAT (2015). Olives statistics. In: Food and Agriculture Organization of the United Nationshttp://www.fao.org/faostat/en/#data/QC. Accessed 20 Feb 2015.

  • Farag, R. S., El-Baroty, G. S., & Basuny, A. M. (2003). Safety evaluation of olive phenolic compounds as natural antioxidants. International Journal of Food Sciences and Nutrition, 54(3), 159–174.

    Article  CAS  Google Scholar 

  • Farag, R. S., Mahmoud, E. A., Basuny, A. M., & Ali, R. F. M. (2006). Influence of crude olive leaf juice on rat liver and kidney functions. International Journal of Food Science & Technology, 41(7), 790–798.

    Article  CAS  Google Scholar 

  • Farag, R. S., Mahmoud, E. A., & Basuny, A. M. (2007). Use crude olive leaf juice as a natural antioxidant for the stability of sunflower oil during heating. International Journal of Food Science & Technology, 42(1), 107–115.

    Article  CAS  Google Scholar 

  • Fernández-Escobar, R., Moreno, R., & García-Creus, M. (1999). Seasonal changes of mineral nutrients in olive leaves during the alternate-bearing cycle. Scientia Horticulturae, 82, 25–45.

    Article  Google Scholar 

  • Ferreira, I. C. F. R., Barros, L., Soares, M. E., Bastos, M. L., & Pereira, J. A. (2007). Antioxidant activity and phenolic contents of Olea europaea L. leaves sprayed with different copper formulations. Food Chemistry, 103, 188–195.

    Article  CAS  Google Scholar 

  • Ghoreishi, S. M., & Shahrestani, R. G. (2009). Subcritical water extraction of mannitol from olive leaves. Journal of Food Engineering, 93(4), 474–481.

    Article  CAS  Google Scholar 

  • Giner, E., Andújar, I., Recio, M. C., Ríos, J. L., Cerdá-Nicolás, J. M., & Giner, R. M. (2011). Oleuropein ameliorates acute colitis in mice. Journal of Agricultural and Food Chemistry, 59, 12882–12892.

    Article  CAS  Google Scholar 

  • Gómez-González, S., Ruiz-Jiménez, J., Priego-Capote, F., & Luque De Castro, M. D. (2010). Qualitative and quantitative sugar profiling in olive fruits, leaves, and stems by gas chromatography-tandem mass spectrometry (GC-MS/MS) after ultrasound-assisted leaching. Journal of Agricultural and Food Chemistry, 58(23), 12292–12299.

    Article  CAS  Google Scholar 

  • Gong, D., Geng, C., Jiang, L., Wang, L., Yoshimura, H., & Zhong, L. (2012). Mechanisms of olive leaf extract-ameliorated rat arthritis caused by kaolin and carrageenan. Phytotherapy Research, 26(3), 397–402.

    CAS  Google Scholar 

  • Goulas, V., Exarchou, V., Troganis, A. N., Psomiadou, E., Fotsis, T., Briasoulis, E., & Gerothanassis, I. P. (2009). Phytochemicals in olive-leaf extracts and their antiproliferative activity against cancer and endothelial cells. Molecular Nutrition and Food Research, 53(5), 600–608.

    Article  CAS  Google Scholar 

  • Grawish, M. E., Zyada, M. M., & Zaher, A. R. (2011). Inhibition of 4-NQO-induced F433 rat tongue carcinogenesis by oleuropein-rich extract. Medical Oncology, 28(4), 1163–1168.

    Article  CAS  Google Scholar 

  • Guinda, Á., Albi, T., Pérez-Camino, M. C., & Lanzón, A. (2004). Supplementation of oils with oleanolic acid from the olive leaf (Olea europaea). European Journal of Lipid Science and Technology, 106, 22–26.

    Article  CAS  Google Scholar 

  • Gupta, A., Vij, G., & Chopra, K. (2010). Possible role of oxidative stress and immunological activation in mouse model of chronic fatigue syndrome and its attenuation by olive extract. Journal of Neuroimmunology, 226(1–2), 3–7.

    Article  CAS  Google Scholar 

  • Haddadin, M. S. Y. (2010). Effect of olive leaf extracts on the growth and metabolism of two probiotic bacteria of intestinal origin. Pakistan Journal of Nutrition, 9(8), 787–793.

    Article  Google Scholar 

  • Haloui, E., Marzouk, B., Marzouk, Z., Bouraoui, A., & Fenina, N. (2011). Hydroxytyrosol and oleuropein from olive leaves: potent anti-inflammatory and analgesic activities. Journal of Food, Agriculture & Environment, 9(3&4), 128–133.

    CAS  Google Scholar 

  • Han, J., Talorete, T. P. N., Yamada, P., & Isoda, H. (2009). Anti-proliferative and apoptotic effects of oleuropein and hydroxytyrosol on human breast cancer MCF-7 cells. Cytotechnology, 59(1), 45–53.

    Article  CAS  Google Scholar 

  • Hashmi, M. A., Khan, A., Hanif, M., Farooq, U., & Perveen, S. (2015). Traditional uses, phytochemistry, and pharmacology of Olea europaea (olive). Evidence-based Complementary and Alternative Medicine. doi:10.1155/2015/541591.

    Google Scholar 

  • Hayes, J. E., Stepanyan, V., Allen, P., O’Grady, M. N., & Kerry, J. P. (2010). Effect of lutein, sesamol, ellagic acid and olive leaf extract on the quality and shelf-life stability of packaged raw minced beef patties. Meat Science, 84(4), 613–620.

    Article  CAS  Google Scholar 

  • Herrero, M., Castro-Puyana, M., Rocamora-Reverte, L., Ferragut, J. a., Cifuentes, A., & Ibáñez, E. (2012). Formation and relevance of 5-hydroxymethylfurfural in bioactive subcritical water extracts from olive leaves. Food Research International, 47(1), 31–37.

    Article  CAS  Google Scholar 

  • Horcajada, M. N., Sanchez, C., Membrez Scalfo, F., Drion, P., Comblain, F., Taralla, S., et al. (2015). Oleuropein or rutin consumption decreases the spontaneous development of osteoarthritis in the Hartley guinea pig. Osteoarthritis and Cartilage, 23(1), 94–102.

    Article  Google Scholar 

  • Huang, P. L., Huang, P. L., & Lee-Huang, S. (2010). Oleuropein and related compounds reduce atherosclerosis. The Open Conference Proceedings Journal, 1(1), 81–86.

    CAS  Google Scholar 

  • Issazadeh, K., & Aliabadi, M. A. (2012). Antimutagenic activity of olive leaf aqueous axtract by Ames test. Journal of Microbiology, 4(9), 397–405.

    Google Scholar 

  • Jaber, H., Ayadi, M., Makni, J., Rigane, G., Sayadi, S., & Bouaziz, M. (2012). Stabilization of refined olive oil by enrichment with chlorophyll pigments extracted from Chemlali olive leaves. European Journal of Lipid Science and Technology, 114(11), 1274–1283.

    Article  CAS  Google Scholar 

  • Janahmadi, Z., & Akbar, A. (2015). Oleuropein offers cardioprotection in rats with acute myocardial infarction. Cardiovascular Toxicology, 15, 61–68.

    Article  CAS  Google Scholar 

  • Japón-Luján, R., & Luque de Castro, M. D. (2006). Superheated liquid extraction of oleuropein and related biophenols from olive leaves. Journal of Chromatography A, 1136(2), 185–191.

    Article  CAS  Google Scholar 

  • Japón-Luján, R., Luque-Rodríguez, J. M., & Luque de Castro, M. D. (2006). Dynamic ultrasound-assisted extraction of oleuropein and related biophenols from olive leaves. Journal of Chromatography A, 1108(1), 76–82.

    Article  CAS  Google Scholar 

  • Jemai, H., Bouaziz, M., Fki, I., El, A., & Sayadi, S. (2008). Chemico-biological interactions hypolipidemic and antioxidant activities of oleuropein and its hydrolysis derivative-rich extracts from Chemlali olive leaves. Chemico-Biological Interactions, 176, 88–98.

    Article  CAS  Google Scholar 

  • Jemai, H., El Feki, A., & Sayadi, S. (2009). Antidiabetic and antioxidant effects of hydroxytyrosol and oleuropein from olive leaves in alloxan-diabetic rats. Journal of Agricultural and Food Chemistry, 57(19), 8798–8804.

    Article  CAS  Google Scholar 

  • Jimenez, P., Masson, L., Barriga, A., Chávez, J., & Robert, P. (2011). Oxidative stability of oils containing olive leaf extracts obtained by pressure, supercritical and solvent-extraction. European Journal of Lipid Science and Technology, 113(4), 497–505.

    Article  CAS  Google Scholar 

  • Khalatbary, A. R., & Ahmadvand, H. (2012). Neuroprotective effect of oleuropein following spinal cord injury in rats. Neurological Research, 34(1), 44–51.

    Article  CAS  Google Scholar 

  • Khalil, M. M. H., Ismail, E. H., & El-magdoub, F. (2012). Biosynthesis of Au nanoparticles using olive leaf extract. Arabian Journal of Chemistry, 5(4), 431–437.

    Article  CAS  Google Scholar 

  • Kim, S. W., Hur, W., Li, T. Z., Lee, Y. K., Choi, J. E., Hong, S. W., et al. (2014). Oleuropein prevents the progression of steatohepatitis to hepatic fibrosis induced by a high-fat diet in mice. Experimental & Molecular Medicine, 46, e92. doi:10.1038/emm.2014.10.

    Article  CAS  Google Scholar 

  • Kimura, Y., & Sumiyoshi, M. (2009). Olive leaf extract and its main component oleuropein prevent chronic ultraviolet B radiation-induced skin damage and carcinogenesis in hairless mice 1. The Journal of Nutrition, 139(11), 2079–2086.

    Article  CAS  Google Scholar 

  • Kontogianni, V. G., & Gerothanassis, I. P. (2012). Phenolic compounds and antioxidant activity of olive leaf extracts. Natural Product Research, 26(2), 186–189.

    Article  CAS  Google Scholar 

  • Kosaraju, S. L., D’ath, L., & Lawrence, A. (2006). Preparation and characterisation of chitosan microspheres for antioxidant delivery. Carbohydrate Polymers, 64(2), 163–167.

    Article  CAS  Google Scholar 

  • Kosaraju, S. L., Labbett, D., Emin, M., Konkzak, I., & Lundin, L. (2008). Delivering polyphenols for healthy ageing. Nutrition & Dietetics, 65(3), S48–S52.

    Article  Google Scholar 

  • Kranz, P., Braun, N., Schulze, N., & Kunz, B. (2010). Sensory quality of functional beverages: bitterness perception and bitter masking of olive leaf extract fortified fruit smoothies. Journal of Food Science, 75(6), 308–311.

    Article  CAS  Google Scholar 

  • Lafka, T.-I., Lazou, A. E., Sinanoglou, V. J., & Lazos, E. S. (2013). Phenolic extracts from wild olive leaves and their potential as edible oils antioxidants. Foods, 2(1), 18–31.

    Article  CAS  Google Scholar 

  • Laguerre, M., Lόpez Giraldo, L. J., Piombo, G., Figueroa-Espinoza, M. C., Pina, M., Benaissa, M., et al. (2009). Characterization of olive-leaf phenolics by ESI-MS and evaluation of their antioxidant capacities by the CAT assay. Journal of the American Oil Chemists’ Society, 86(12), 1215–1225.

    Article  CAS  Google Scholar 

  • Lalas, S., Athanasiadis, V., Gortzi, O., Bounitsi, M., Giovanoudis, I., Tsaknis, J., & Bogiatzis, F. (2011). Enrichment of table olives with polyphenols extracted from olive leaves. Food Chemistry, 127(4), 1521–1525.

    Article  CAS  Google Scholar 

  • Lee, O., & Lee, B. (2010). Antioxidant and antimicrobial activities of individual and combined phenolics in Olea europaea leaf extract. Bioresource Technology, 101(10), 3751–3754.

    Article  CAS  Google Scholar 

  • Lee, O. H., Lee, B.-Y., Lee, J., Lee, H.-B., Son, J.-Y., Park, C. S., et al. (2009). Assessment of phenolics-enriched extract and fractions of olive leaves and their antioxidant activities. Bioresource Technology, 100(23), 6107–6113.

    Article  CAS  Google Scholar 

  • Lee-Huang, S., Zhang, L., Huang, L., Chang, Y., & Huang, P. L. (2003). Anti-HIV activity of olive leaf extract (OLE) and modulation of host cell gene expression by HIV-1 infection and OLE treatment. Biochemical and Biophysical Research Communications, 307, 1029–1037.

    Article  CAS  Google Scholar 

  • López-Miranda, J., Pérez-Jiménez, F., Ros, E., De Caterina, R., Badimón, L., Covas, M. I., et al. (2010). Olive oil and health: summary of the II international conference on olive oil and health consensus report, Jaén and Córdoba (Spain) 2008. Nutrition, Metabolism, and Cardiovascular Diseases, 20(4), 284–294.

    Article  Google Scholar 

  • Machado, S., Pinto, S. L., Grosso, J. P., Nouws, H. P. A., Albergaria, J. T., & Delerue-Matos, C. (2013). Green production of zero-valent iron nanoparticles using tree leaf extracts. Science of the Total Environment, 445-446, 1–8.

    Article  CAS  Google Scholar 

  • Mahmoudi, A., Ghorbel, H., Bouallegui, Z., Marrekchi, R., Isoda, H., & Sayadi, S. (2015). Oleuropein and hydroxytyrosol protect from bisphenol A effects in livers and kidneys of lactating mother rats and their pups. Experimental and Toxicologic Pathology, 67(7–8), 413–425.

    Article  CAS  Google Scholar 

  • Malheiro, R., Casal, S., Teixeira, H., Bento, A., & Pereira, J. A. (2013). Effect of olive leaves addition during the extraction process of overmature fruits on olive oil quality. Food and Bioprocess Technology, 6(2), 509–521.

    Article  CAS  Google Scholar 

  • Malik, N. S., & Bradford, J. M. (2008). Recovery and stability of oleuropein and other phenolic compounds during extraction and processing of olive (Olea europaea L.) leaves. Journal of Food Agriculture and Environment, 6(2), 8–13.

    CAS  Google Scholar 

  • Markín, D., Duek, L., & Berdícevsky, I. (2003). In vitro antimicrobial activity of olive leaves. Mycoses, 46(3–4), 132–136.

    Article  Google Scholar 

  • Markopoulos, C., Vertzoni, M., Agalias, A., Magiatis, P., & Reppas, C. (2009). Stability of oleuropein in the human proximal gut. Journal of Pharmacy and Pharmacology, 61(2), 143–149.

    Article  CAS  Google Scholar 

  • Marhamatizadeh, M. H., Ehsandoost, E., Gholami, P., & Mohaghegh, M. D. (2013). Effect of olive leaf extract on growth and viability of Lactobacillus acidophilus and Bifidobacterium bifidum for production of probiotic milk and yoghurt. International Journal of Farming and Allied Sciences, 2(17), 572–578.

    Google Scholar 

  • Martín García, A. I., Moumen, A., Yáñez Ruiz, D. R., & Molina Alcaide, E. (2003). Chemical composition and nutrients availability for goats and sheep of two-stage olive cake and olive leaves. Animal Feed Science and Technology, 107, 61–74.

    Article  CAS  Google Scholar 

  • Martín-García, A. I., & Molina-Alcaide, E. (2008). Effect of different drying procedures on the nutritive value of olive (Olea europaea var. europaea) leaves for ruminants. Animal Feed Science and Technology, 142(3–4), 317–329.

    Article  CAS  Google Scholar 

  • Milanizadeh, S., Bigdeli, M. R., Rasoulian, B., & Amani, D. (2014). The effects of olive leaf extract on antioxidant enzymes activity and tumor growth in breast cancer. Thrita. doi:10.5812/thrita.12914.

    Google Scholar 

  • Mnafgui, K., Khlif, I., Hajji, R., Derbali, F., Kraiem, F., Ellefi, H., et al. (2015). Preventive effects of oleuropein against cardiac remodeling after myocardial infarction in Wistar rat through inhibiting angiotensin-converting enzyme activity. Toxicology Mechanisms and Methods, 25(7), 538–546.

    Article  CAS  Google Scholar 

  • Mohammadi, A., Jafari, S. M., Assadpour, E., & Faridi Esfanjani, A. (2016). Nano-encapsulation of olive leaf phenolic compounds through WPC–pectin complexes and evaluating their release rate. International Journal of Biological Macromolecules, 82, 816–822.

    Article  CAS  Google Scholar 

  • Molina-Alcaide, E., & Yáñez-Ruiz, D. R. (2008). Potential use of olive by-products in ruminant feeding: a review. Animal Feed Science and Technology, 147(1–3), 247–264.

    Article  CAS  Google Scholar 

  • Mourtzinos, I., Salta, F., Yannakopoulou, K., Chiou, A., & Karathanos, V. T. (2007). Encapsulation of olive leaf extract in β-cyclodextrin. Journal of Agricultural and Food Chemistry, 55(20), 8088–8094.

    Article  CAS  Google Scholar 

  • Murotomi, K., Umeno, A., Yasunaga, M., Shichiri, M., Ishida, N., Koike, T., et al. (2015). Oleuropein-rich diet attenuates hyperglycemia and impaired glucose tolerance in type 2 diabetes model mouse. Journal of Agricultural and Food Chemistry, 63(30), 6715–6722.

    Article  CAS  Google Scholar 

  • Mylonaki, S., Kiassos, E., Makris, D. P., & Kefalas, P. (2008). Optimisation of the extraction of olive (Olea europaea) leaf phenolics using water/ethanol-based solvent systems and response surface methodology. Analytical and Bioanalytical Chemistry, 392(5), 977–985.

    Article  CAS  Google Scholar 

  • Nejad, M. S., & Niroomand, A. (2007). Carbohydrate content and its roles in alternate bearing in olive. Pakistan Journal of Biological Sciences, 10(16), 2744–2747.

    Article  CAS  Google Scholar 

  • Nekooeian, A., Dehghani, G., Mostafavi, H., & Khalili, A. (2011). The effect of hydroalcoholic extract of olive leaves on blood pressure in rat model of two—kidney, one-clip goldblatt hypertension. Iranian Cardiovascular Research, 5(1), 1–6.

    Google Scholar 

  • Nourhène, B., Mohammed, K., & Nabil, K. (2008). Experimental and mathematical investigations of convective solar drying of four varieties of olive leaves. Food and Bioproducts Processing, 86, 176–184.

    Article  CAS  Google Scholar 

  • Omar, S. H. (2010). Oleuropein in olive and its pharmacological effects. Scientia Pharmaceutica, 78(2), 133–154.

    Article  CAS  Google Scholar 

  • Ozturk, H., Demirtas, A., Salgirli, Y., Pekcan, M., Emre, B., & Fidanci, U. R. (2012). Effects of olive leaf extract on rumen microbial fermentation in in vitro semi-continuous culture system (RUSITEC). Erciyes Üniversitesi Veteriner Fakültesi Dergisi, 59, 17–21.

    Article  Google Scholar 

  • Paiva-Martins, F., & Pinto, M. (2008). Isolation and characterization of a new hydroxytyrosol derivative from olive (Olea europaea) leaves. Journal of Agricultural and Food Chemistry, 56(14), 5582–5588.

    Article  CAS  Google Scholar 

  • Park, S., Choi, Y., Um, S., Yoon, S. K., & Park, T. (2011). Oleuropein attenuates hepatic steatosis induced by high-fat diet in mice. Journal of Hepatology, 54(5), 984–993.

    Article  CAS  Google Scholar 

  • Pasban-aliabadi, H., Esmaeili-mahani, S., Sheibani, V., Abbasnejad, M., Mehdizadeh, A., & Yaghoobi, M. M. (2013). Inhibition of 6-hydroxydopamine-induced PC12 cell apoptosis by olive (Olea europaea L.) leaf extract is performed by its main component oleuropein. Neuroscience Research, 16(2), 134–142.

    CAS  Google Scholar 

  • Pazos, M., Alonso, A., Sánchez, I., & Medina, I. (2008). Hydroxytyrosol prevents oxidative deterioration in foodstuffs rich in fish lipids. Journal of Agricultural and Food Chemistry, 56(9), 3334–3340.

    Article  CAS  Google Scholar 

  • Pereira, A. P., Ferreira, I. C. F. R., Marcelino, F., Valentão, P., Andrade, P. B., Seabra, R., et al. (2007). Phenolic compounds and antimicrobial activity of olive (Olea europaea L. Cv. Cobrançosa) leaves. Molecules, 12(5), 1153–1162.

    Article  CAS  Google Scholar 

  • Perrinjaquet-moccetti, T., Busjahn, A., Schmidlin, C., Schmidt, A., Bradl, B., & Aydogan, C. (2008). Food supplementation with an olive (Olea europaea L.) leaf extract reduces blood pressure in borderline hypertensive monozygotic twins. Phytotherapy Research, 22, 1239–1242.

    Article  Google Scholar 

  • Perugini, P., Vettor, M., Rona, C., Troisi, L., Villanova, L., Genta, I., et al. (2008). Efficacy of oleuropein against UVB irradiation: preliminary evaluation. International Journal of Cosmetic Science, 30(2), 113–120.

    Article  CAS  Google Scholar 

  • Petridis, A., Therios, I., Samouris, G., & Tananaki, C. (2012). Salinity-induced changes in phenolic compounds in leaves and roots of four olive cultivars (Olea europaea L.) and their relationship to antioxidant activity. Environmental and Experimental Botany, 79, 37–43.

    Article  CAS  Google Scholar 

  • Poudyal, H., Campbell, F., & Brown, L. (2010). Olive leaf extract attenuates cardiac, hepatic, and metabolic changes in high carbohydrate-, high fat-fed rats. The Journal of Nutrition, 140, 946–953.

    Article  CAS  Google Scholar 

  • Rabiei, Z., Bigdeli, M. R., Rasoulian, B., Ghassempour, A., & Mirzajani, F. (2012). The neuroprotection effect of pretreatment with olive leaf extract on brain lipidomics in rat stroke model. Phytomedicine, 19(10), 940–946.

    Article  CAS  Google Scholar 

  • Rafiee, Z., Jafari, S. M., Alami, M., & Khomeiri, M. (2011). Microwave-assisted extraction of phenolic compounds from olive leaves; a comparison with maceration. The Journal of Animal & Plant Sciences, 21(4), 738–745.

    CAS  Google Scholar 

  • Ranalli, A., Contento, S., Lucera, L., Di Febo, M., Marchegiani, D., & Di Fonzo, V. (2006). Factors affecting the contents of iridoid oleuropein in olive leaves (Olea europaea L.). Journal of Agricultural and Food Chemistry, 54(2), 434–440.

    Article  CAS  Google Scholar 

  • Romero, M., Toral, M., Gómez-Guzmán, M., Jiménez, R., Galindo, P., Sánchez, M., et al. (2016). Antihypertensive effects of oleuropein-enriched olive leaf extract in spontaneously hypertensive rats. Food & Function, 7(1), 584–593.

    Article  CAS  Google Scholar 

  • Ryan, D., Prenzler, P. D., Lavee, S., Antolovich, M., & Robards, K. (2003). Quantitative changes in phenolic content during physiological development of the olive (Olea europaea) cultivar Hardy’s Mammoth. Journal of Agricultural and Food Chemistry, 51, 2532–2538.

    Article  CAS  Google Scholar 

  • Şahin, S., Bilgin, M., & Dramur, M. U. (2011). Investigation of oleuropein content in olive leaf extract obtained by supercritical fluid extraction and soxhlet methods. Separation Science and Technology, 46(11), 1829–1837.

    Article  CAS  Google Scholar 

  • Salah, M. B., Abdelmelek, H., & Abderraba, M. (2012). Study of phenolic composition and biological activities assessment of olive leaves from different varieties grown in Tunisia. Medicinal Chemistry, 2(5), 107–111.

    Google Scholar 

  • Samet, I., Han, J., Jlaiel, L., Sayadi, S., & Isoda, H. (2014). Olive (Olea europaea) leaf extract induces apoptosis and monocyte/macrophage differentiation in human chronic myelogenous leukemia K562 cells: insight into the underlying mechanism. Oxidative Medicine and Cellular Longevity. doi:10.1155/2014/927619.

    Google Scholar 

  • Sarbishegi, M., Mehraein, F., & Soleimani, M. (2014). Antioxidant role of oleuropein on midbrain and dopaminergic neurons of substantia nigra in aged rats. Iranian Biomedical Journal, 18(1), 16–22.

    CAS  Google Scholar 

  • Sato, H., Genet, C., Strehle, A., Thomas, C., Lobstein, A., Wagner, A., et al. (2007). Anti-hyperglycemic activity of a TGR5 agonist isolated from Olea europaea. Biochemical and Biophysical Research Communications, 362(4), 793–798.

    Article  CAS  Google Scholar 

  • Shafey, T. M., Al-Ruqaei, I. M., & Almufarij, S. I. (2013). Effect of feeding olive leaves extract (oleuropein) on the performance, nutrient utilization, small intestine and carcass characteristics of broiler chickens. Journal of Animal and Veterinary Advances, 12(6), 740–746.

    Google Scholar 

  • Shen, Y., Song, S. J., Keum, N., & Park, T. (2014). Olive leaf extract attenuates obesity in high-fat diet-fed mice by modulating the expression of molecules involved in adipogenesis and thermogenesis. Evidence-Based Complementary and Alternative Medicine. doi:10.1155/2014/971890.

    Google Scholar 

  • Singh, I., Mok, M., Christensen, A., Turner, A. H., & Hawley, J. A. (2008). The effects of polyphenols in olive leaves on platelet function. Nutrition, Metabolism, and Cardiovascular Diseases, 18, 127–132.

    Article  CAS  Google Scholar 

  • Sonda, A., Akram, Z., Boutheina, G., Guido, F., & Mohamed, B. (2014). Effect of addition of olive leaves before fruits extraction process to some monovarietal Tunisian extra-virgin olive oils using chemometric analysis. Journal of Agricultural and Food Chemistry, 62(1), 251–263.

    Article  CAS  Google Scholar 

  • Souilem, S., Kobayashi, I., Neves, M. A., Jlaiel, L., Isoda, H., Sayadi, S., & Nakajima, M. (2014a). Interfacial characteristics and microchannel emulsification of oleuropein-containing triglyceride oil–water systems. Food Research International, 62, 467–475.

    Article  CAS  Google Scholar 

  • Souilem, S., Kobayashi, I., Neves, M. A., Sayadi, S., Ichikawa, S., & Nakajima, M. (2014b). Preparation of monodisperse food-grade oleuropein-loaded W/O/W emulsions using microchannel emulsification and evaluation of their storage stability. Food and Bioprocess Technology, 7(7), 2014–2027.

    Article  CAS  Google Scholar 

  • Stamatopoulos, K., Katsoyannos, E., & Chatzilazarou, A. (2014). Antioxidant activity and thermal stability of oleuropein and related phenolic compounds of olive leaf extract after separation and concentration by salting-out-assisted cloud point extraction. Antioxidants, 3(2), 229–244.

    Article  CAS  Google Scholar 

  • Susalit, E., Agus, N., Effendi, I., Tjandrawinata, R. R., Nofiarny, D., Perrinjaquet-Moccetti, T., & Verbruggen, M. (2011). Olive (Olea europaea) leaf extract effective in patients with stage-1 hypertension: comparison with Captopril. Phytomedicine, 18(4), 251–258.

    Article  CAS  Google Scholar 

  • Sudjana, A. N., Orazio, C. D., Ryan, V., Rasool, N., Ng, J., & Islam, N. (2009). Antimicrobial activity of commercial Olea europaea (olive) leaf extract. International Journal of Antimicrobial Agents, 33, 461–463.

    Article  CAS  Google Scholar 

  • Taamalli, A., Arráez-roman, D., Barrajón-catalán, E., Ruiz-Torres, V., Pérez-Sánchez, A., Herrero, M., et al. (2012a). Use of advanced techniques for the extraction of phenolic compounds from Tunisian olive leaves: phenolic composition and cytotoxicity against human breast cancer cells. Food and Chemical Toxicology, 50(6), 1817–1825.

    Article  CAS  Google Scholar 

  • Taamalli, A., Arráez-Román, D., Ibañez, E., Zarrouk, M., Segura-Carretero, A., & Fernández-Gutiérrez, A. (2012b). Optimization of microwave-assisted extraction for the characterization of olive leaf phenolic compounds by using HPLC-ESI-TOF-MS/IT-MS2. Journal of Agricultural and Food Chemistry, 60(3), 791–798.

    Article  CAS  Google Scholar 

  • Tadić, Đ., Ĉadeţ, N., Ota, A., Butinar, B., Trošt, K., Pajin, B., et al., S. (2012). Antimicrobial activity of phenolic extracts from olive leaves and grape skins and impact of encapsulation. In: Proceedings of 6th Central European Congress on Food, Novi Sad, Serbia,1000–1005.

  • Taghvaei, M., & Jafari, S. M. (2013). Application and stability of natural antioxidants in edible oils in order to substitute synthetic additives. Journal of Food Science and Technology, 52(3), 1272–1282.

    Article  CAS  Google Scholar 

  • Taghvaei, M., Jafari, S. M., Mahoonak, A. S., Nikoo, A. M., Rahmanian, N., Hajitabar, J., & Meshginfar, N. (2014). The effect of natural antioxidants extracted from plant and animal resources on the oxidative stability of soybean oil. LWT—Food Science and Technology, 56(1), 124–130.

    Article  CAS  Google Scholar 

  • Talhaoui, N., Gómez-caravaca, A. M., León, L., De, R., Segura-carretero, A., & Fernández-gutiérrez, A. (2014). Determination of phenolic compounds of “Sikitita” olive leaves by HPLC-DAD-TOF-MS. Comparison with its parents “Arbequina” and “Picual” olive leaves. LWT - Food Science and Technology, 58(1), 28–34.

    Article  CAS  Google Scholar 

  • Tavafi, M., Ahmadvand, H., & Toolabi, P. (2012). Inhibitory effect of olive leaf extract on gentamicin-induced nephrotoxicity in rats. Natural Resources Research, 6, 25–32.

    Google Scholar 

  • Tayoub, G., Sulaiman, H., Hassan, A. H., & Alorfi, M. (2012). Determination of oleuropein in leaves and fruits of some Syrian olive varieties. International Journal of Medicinal and Aromatic Plants, 2(3), 428–433.

    Google Scholar 

  • Trebušak, T., Levart, A., Salobir, J., & Pirman, T. (2014). Effect of Ganoderma lucidum (Reishi mushroom) or Olea europaea (olive) leaves on oxidative stability of rabbit meat fortified with n-3 fatty acids. Meat Science, 96(3), 1275–1280.

    Article  CAS  Google Scholar 

  • Tunca, B., Tezcan, G., Cecener, G., Egeli, U., Ak, S., Malyer, H., et al. (2012). Olea europaea leaf extract alters microRNA expression in human glioblastoma cells. Journal of Cancer Research and Clinical Oncology, 138(11), 1831–1844.

    Article  CAS  Google Scholar 

  • Varmaghany, S., Rahimi, S., Karimi Torshizi, M. A., Lotfollahian, H., & Hassanzadeh, M. (2013). Effect of olive leaves on ascites incidence, hematological parameters and growth performance in broilers reared under standard and cold temperature conditions. Animal Feed Science and Technology, 185(1–2), 60–69.

    Article  CAS  Google Scholar 

  • Wang, W., Scali, M., Vignani, R., Spadafora, A., Sensi, E., Mazzuca, S., & Cresti, M. (2003). Protein extraction for two-dimensional electrophoresis from olive leaf, a plant tissue containing high levels of interfering compounds. Electrophoresis, 24, 2369–2375.

    Article  CAS  Google Scholar 

  • Xie, P., Huang, L., Zhang, C., You, F., & Zhang, Y. (2015). Reduced pressure extraction of oleuropein from olive leaves (Olea europaea L.) with ultrasound assistance. Food and Bioproducts Processing, 93, 29–38.

    Article  CAS  Google Scholar 

  • Xynos, N., Papaefstathiou, G., Psychis, M., Argyropoulou, A., Aligiannis, N., & Skaltsounis, A. L. (2012). Development of a green extraction procedure with super/subcritical fluids to produce extracts enriched in oleuropein from olive leaves. The Journal of Supercritical Fluids, 67, 89–93.

    Article  CAS  Google Scholar 

  • Zheng, A., Li, H., Cao, K., Xu, J., Zou, X., Li, Y., et al. (2015a). Maternal hydroxytyrosol administration improves neurogenesis and cognitive function in prenatally stressed offspring. The Journal of Nutritional Biochemistry, 26(2), 190–199.

    Article  CAS  Google Scholar 

  • Zheng, A., Li, H., Xu, J., Cao, K., Li, H., Pu, W., et al. (2015b). Hydroxytyrosol improves mitochondrial function and reduces oxidative stress in the brain of db/db mice: role of AMP-activated protein kinase activation. British Journal of Nutrition, 113, 1667–1676.

    Article  CAS  Google Scholar 

  • Zribi, A., Gargouri, B., Jabeur, H., Rebaï, A., Abdelhedi, R., & Bouaziz, M. (2013). Enrichment of pan-frying refined oils with olive leaf phenolic-rich extract to extend the usage life. European Journal of Lipid Science and Technology, 115(12), 1443–1453.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Science and Technology Research Partnership for Sustainable Development (SATREPS) Project, financially supported by JICA and JST, Japan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Isao Kobayashi or Mitsutoshi Nakajima.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Souilem, S., Fki, I., Kobayashi, I. et al. Emerging Technologies for Recovery of Value-Added Components from Olive Leaves and Their Applications in Food/Feed Industries. Food Bioprocess Technol 10, 229–248 (2017). https://doi.org/10.1007/s11947-016-1834-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-016-1834-7

Keywords

Navigation