Skip to main content
Log in

Rapid Discrimination and Determination of Polyunsaturated Fatty Acid Composition in Marine Oils by FTIR Spectroscopy and Multivariate Data Analysis

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

A rapid analytical approach for discrimination and quantitative determination of polyunsaturated fatty acid (PUFA) contents, particularly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), in a range of oils extracted from marine resources has been developed by using attenuated total reflection Fourier transform infrared spectroscopy and multivariate data analysis. The spectral data were collected without any sample preparation; thus, no chemical preparation was involved, but data were rather processed directly using the developed spectral analysis platform, making it fast, very cost effective, and suitable for routine use in various biotechnological and food research and related industries. Unsupervised pattern recognition techniques, including principal component analysis and unsupervised hierarchical cluster analysis, discriminated the marine oils into groups by correlating similarities and differences in their fatty acid (FA) compositions that corresponded well to the FA profiles obtained from traditional lipid analysis based on gas chromatography (GC). Furthermore, quantitative determination of unsaturated fatty acids, PUFAs, EPA and DHA, by partial least square regression analysis through which calibration models were optimized specifically for each targeted FA, was performed in both known marine oils and totally independent unknown n − 3 oil samples obtained from an actual commercial product in order to provide prospective testing of the developed models towards actual applications. The resultant predicted FAs were achieved at a good accuracy compared to their reference GC values as evidenced through (1) low root mean square error of prediction, (2) good coefficient of determination close to 1 (i.e., R 2≥ 0.96), and (3) the residual predictive deviation values that indicated the predictive power at good and higher levels for all the target FAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Afseth, N. K., Martens, H., Randby, A., Gidskehaug, L., Narum, B., Jørgensen, K., et al. (2010). Predicting the fatty acid composition of milk: a comparison of two Fourier transform infrared sampling techniques. Applied Spectroscopy, 64(7), 700–707.

    Article  CAS  Google Scholar 

  • Armenta, R. E., Scott, S. D., Burja, A. M., Radianingtyas, H., & Barrow, C. J. (2009). Optimization of fatty acid determination in selected fish and microalgal oils. Chromatographia, 70(3/4), 629–636.

    Article  CAS  Google Scholar 

  • Barrow, C. J., Nolan, C., & Jin, Y. (2007). Stabilization of highly unsaturated fatty acids and delivery into foods. Lipid Technology, 19(5), 108–111.

    Article  CAS  Google Scholar 

  • Braeckman, U., Provoost, P., Sabbe, K., Soetaert, K., Middelburg, J. J., Vincx, M., et al. (2012). Temporal dynamics in the diet of two marine polychaetes as inferred from fatty acid biomarkers. Journal of Sea Research, 68, 6–19.

    Article  CAS  Google Scholar 

  • Burja, A. M., Radianingtyas, H., Windust, A., & Barrow, C. J. (2006). Isolation and characterization of polyunsaturated fatty acid producing Thraustochytrium species: screening of strains and optimization of omega-3 production. Applied Microbiology and Biotechnology, 72, 1161–1169.

    Article  CAS  Google Scholar 

  • Burja, A. M., Armenta, R. E., Radianingtyas, H., & Barrow, C. J. (2007). Evaluation of fatty acid extraction methods for Thraustochytrium sp. ONC-T18. Journal of Agricultural and Food Chemistry, 55, 4795–4801.

    Article  CAS  Google Scholar 

  • Connell, A. M., Dunn, M. R., & Forman, J. (2010). Diet and dietary variation of New Zealand hoki Macruronus novaezelandiae. New Zealand Journal of Marine and Freshwater Research, 44(4), 289–308.

    Article  Google Scholar 

  • Curtis, J. M., Berrigan, N., & Dauphinee, P. (2008). The determination of n−3 fatty acid levels in food products containing microencapsulated fish oil using the one-step extraction method. Part 1: measurement in the raw ingredient and in dry powdered foods. Journal of the American Oil Chemists Society, 85, 297–305.

    Article  CAS  Google Scholar 

  • Falk-Petersen, S., Haug, T., Hop, H., Nilssen, K. T., & Wold, A. (2009). Transfer of lipids from plankton to blubber of harp and hooded seals off East Greenland. Deep Sea Research Part II: Topical Studies in Oceanography, 56(21–22), 2080–2086.

    Article  CAS  Google Scholar 

  • Geladi, P., & Kowalski, B. R. (1986). Partial least-squares regression: a tutorial. Analytica Chimica Acta, 185, 1–17.

    Article  CAS  Google Scholar 

  • Goutte, C. (1997). Note on free lunches and cross-validation. Neural Computation, 9(6), 1245–1249.

    Article  Google Scholar 

  • Guillén, M. D., & Cabo, N. (1997). Characterization of edible oils and lard by Fourier transform infrared spectroscopy. Relationships between composition and frequency of concrete bands in the fingerprint region. Journal of the American Oil Chemists' Society, 74, 1281–1286.

    Article  Google Scholar 

  • Indarti, E., Majid, M. I. A., Hashim, R., & Chong, A. (2005). Direct FAME synthesis for rapid total lipid analysis from fish oil and cod liver oil. Journal of Food Composition and Analysis, 18, 161–170.

    Article  CAS  Google Scholar 

  • Kansiz, M., Schustera, K. C., McNaughton, D., & Lendl, B. (2005). Sequential injection/mid-infrared spectroscopic analysis of an acetone–butanol–ethanol fermentation: analyte cross correlation effects. Spectroscopy Letters, 38, 677–702.

    Article  CAS  Google Scholar 

  • Kohler, A., Kirschner, C., Oust, A., & Martens, H. (2005). Extended multiplicative signal correction as a tool for separation and characterization of physical and chemical information in Fourier transform infrared microscopy images of cryo-sections of beef loin. Applied Spectroscopy, 59(6), 707–716.

    Article  CAS  Google Scholar 

  • Kohler, A., Afseth, N. K., & Martens, H. (2010). Chemometrics in biospectroscopy. In E. Li-Chan, P. R. Griffiths, & J. M. Chalmers (Eds.), Applications of vibrational spectroscopy in food science (pp. 89–108). Chichester: Wiley.

    Google Scholar 

  • Kralovec, J. A., Zhang, S., Zhang, W., & Barrow, C. J. (2012). A review of the progress in enzymatic concentration and microencapsulation of omega-3 rich oil from fish and microbial sources. Food Chemistry, 131, 639–644.

    Article  CAS  Google Scholar 

  • Liu, K.-Z., Shaw, R. A., Man, A., Dembinski, T. C., & Mantsch, H. H. (2002). Reagent-free, simultaneous determination of serum cholesterol in HDL and LDL by infrared spectroscopy. Clinical Chemistry, 48(3), 499–506.

    CAS  Google Scholar 

  • Locher, F., Heuwinkel, H., Gutser, R., & Schmidhalter, U. (2005). The legume content in multispecies mixtures as estimated with near infrared reflectance spectroscopy: method validation. Agronomy Journal, 97, 18–25.

    Article  Google Scholar 

  • Maggio, R. M., Kaufman, T. S., Del Carlo, M., Cerretani, L., Bendini, A., Cichelli, A., et al. (2009). Monitoring of fatty acid composition in virgin olive oil by Fourier transformed infrared spectroscopy coupled with partial least squares. Food Chemistry, 114, 1549–1554.

    Article  CAS  Google Scholar 

  • Martens, H., Nielsen, J. P., & Engelsen, S. B. (2003). Light scattering and light absorbance separated by extended multiplicative signal correction. Application to near-infrared transmission analysis of powder mixtures. Analytical Chemistry, 75, 394–404.

    Article  CAS  Google Scholar 

  • McDonald, R. E., & Mossoba, M. M. (2002). Methods for trans fatty acid analysis. In C. C. Akoh & D. B. Min (Eds.), Food lipids: chemistry, nutrition, and biotechnology (2nd ed.). New York: Marcel Dekker.

    Google Scholar 

  • Miller, M. R., Perry, N. B., Burgess, E. J., & Marshall, S. N. (2011). Regiospecific analyses of triacylglycerols of hoki (Macruronus novaezelandiae) and Greenshell™ mussel (Perna canaliculus). Journal of the American Oil Chemists' Society, 88, 509–516.

    Article  CAS  Google Scholar 

  • Naes, T., Isaksson, T., Fearn, T., & Davies, T. (2002). A user-friendly guide to multivariate calibration and classification. Chichester: NIR.

    Google Scholar 

  • Naumann, D., Labischinski, H., & Giesbrecht, P. (1990). The characterization of microorganisms by Fourier-transform infrared spectroscopy (FT-IR). In W. H. Nelson (Ed.), Modern techniques for rapid microbiological analysis. Weinheim: VCH Verlag Chemie.

    Google Scholar 

  • Osako, K., Saito, H., Hossain, M. A., Kuwahara, K., & Okamoto, A. (2006). Docosahexaenoic acid levels in the lipids of spotted mackerel Scomber australasicus. Lipids, 41, 713–720.

    Article  CAS  Google Scholar 

  • Ripoche, A., & Guillard, A. S. (2001). Determination of fatty acid composition of pork fat by Fourier transform infrared spectroscopy. Meat Science, 58, 299–304.

    Article  CAS  Google Scholar 

  • Savitzky, A., & Golay, M. J. E. (1964). Smoothing and differentiation of data by simplified least squares procedures. Analytical Chemistry, 36, 1627–1639.

    Article  CAS  Google Scholar 

  • Silverstein, R. M., Blaser, G. C., & Morril, T. C. (1974). Spectrometric identification of organic compounds (3rd ed.). NY: Wiley.

    Google Scholar 

  • Simopoulos, A. P. (1991). Omega-3 fatty acids in health and disease and in growth and development. American Journal of Clinical Nutrition, 54, 438–463.

    CAS  Google Scholar 

  • Simopoulos, A. P. (2002). Omega-3 fatty acids in inflammation and autoimmune diseases. Journal of the American College of Nutrition, 21(6), 495–505.

    Article  CAS  Google Scholar 

  • Tucker, S., Don Bowen, W., Iverson, S. J., & Stenson, G. B. (2009). Intrinsic and extrinsic sources of variation in the diets of harp and hooded seals revealed by fatty acid profiles. Canadian Journal of Zoology, 87(2), 139–151.

    Article  CAS  Google Scholar 

  • Ulberth, F., & Henninger, M. (1992). One-step extraction/methylation method for determining the fatty acid composition of processed foods. Journal of the American Oil Chemists' Society, 69, 174–177.

    Article  CAS  Google Scholar 

  • Vongsvivut, J., Heraud, P., Zhang, W., Kralovec, J. A., McNaughton, D., & Barrow, C. J. (2012). Quantitative determination of fatty acid compositions in micro-encapsulated fish-oil supplements using Fourier transform infrared (FTIR) spectroscopy. Food Chemistry, 135, 603–609.

    Article  CAS  Google Scholar 

  • Vongsvivut, J., Heraud, P., Zhang, W., Kralovec, J. A., McNaughton, D., & Barrow, C. J. (2013). Rapid determination of protein contents in microencapsulated fish oil supplements by ATR-FTIR spectroscopy and partial least square regression (PLSR) analysis. Food and Bioprocess Technology. doi:10.1007/s11947-11013-11122-11948.

    Google Scholar 

  • Wanasundara, U. N., & Shahidi, F. (1996). Stabilization of seal blubber and menhaden oils with green tea catechins. Journal of the American Oil Chemists Society, 73(9), 1183–1190.

    Article  CAS  Google Scholar 

  • Ward, J. H. (1963). Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association, 58, 236–244.

    Article  Google Scholar 

  • Ward, O. P., & Singh, A. (2005). Omega-3/6 fatty acids: alternative sources of production. Process Biochemistry, 40, 3627–3652.

    Article  CAS  Google Scholar 

  • Wetherbee, B. M., & Nichols, P. D. (2000). Lipid composition of the liver oil of deep sea sharks from the Chatham Rise, New Zealand. Comparative Biochemistry and Physiology. Part B, Biochemistry and Molecular Biology, 125, 511–521.

    Article  CAS  Google Scholar 

  • Williams, P. C. (2001). Implementation of near-infrared technology. In P. Williams & K. Norris (Eds.), Near infrared technology in the agriculture and food industries (2nd ed., pp. 145–169). St. Paul: American Association of Cereal Chemists.

    Google Scholar 

  • Williams, P. C., & Sobering, D. C. (1993). Comparison of commercial near infrared transmittance and reflectance instruments for analysis of whole grains and seeds. Journal of Near Infrared Spectroscopy, 1(1), 25–32.

    Article  CAS  Google Scholar 

  • Würzberg, L., Peters, J., Schüller, M., & Brandt, A. (2011). Diet insights of deep-sea polychaetes derived from fatty acid analyses. Deep Sea Research Part II: Topical Studies in Oceanography, 58(1–2), 153–162.

    Article  Google Scholar 

  • Wynn, J. P., & Ratledge, C. (2005). Oils from microorganisms. In F. Shahidi (Ed.), Bailey’s industrial oil and fat products (6th ed., pp. 121–153). Hoboken: Wiley.

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support for JV through the Alfred Deakin Postdoctoral Research Fellowship (Project ID. RM22134). The Thraustochytrium, tuna, and bonito oils, as well as the commercial n − 3 oil product, were provided by Dr. Wei Zhang and Dr. Jaroslav A. Kralovec at Ocean Nutrition Canada Ltd, as a part of the Australian Research Council (ARC) Linkage grant (LP100100069). We also thank Professor Fereidoon Shahidi at Memorial University of Newfoundland (Canada) for providing the seal blubber oil used in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jitraporn Vongsvivut.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

(DOCX 37 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vongsvivut, J., Miller, M.R., McNaughton, D. et al. Rapid Discrimination and Determination of Polyunsaturated Fatty Acid Composition in Marine Oils by FTIR Spectroscopy and Multivariate Data Analysis. Food Bioprocess Technol 7, 2410–2422 (2014). https://doi.org/10.1007/s11947-013-1251-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-013-1251-0

Keywords

Navigation