Skip to main content
Log in

Estimation of Accumulated Lethality Under Pressure-Assisted Thermal Processing

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

A study was conducted to develop an integrated process lethality model for pressure-assisted thermal processing (PATP) taking into consideration the lethal contribution of both pressure and heat on spore inactivation. Assuming that the momentary inactivation rate was dependent on the survival ratio and momentary pressure–thermal history, a differential equation was formulated and numerically solved using the Runge–Kutta method. Published data on combined pressure–heat inactivation of Bacillus amyloliquefaciens spores were used to obtain model kinetic parameters that considered both pressure and thermal effects. The model was experimentally validated under several process scenarios using a pilot-scale high-pressure food processor. Using first-order kinetics in the model resulted in the overestimation of log reduction compared to the experimental values. When the n th-order kinetics was used, the computed accumulated lethality and the log reduction values were found to be in reasonable agreement with the experimental data. Within the experimental conditions studied, spatial variation in process temperature resulted up to 3.5 log variation in survivors between the top and bottom of the carrier basket. The predicted log reduction of B. amyloliquefaciens spores in deionized water and carrot purée had satisfactory accuracy (1.07–1.12) and regression coefficients (0.83–0.92). The model was also able to predict log reductions obtained during a double-pulse treatment conducted using a pilot-scale high-pressure processor. The developed model can be a useful tool to examine the effect of combined pressure–thermal treatment on bacterial spore lethality and assess PATP microbial safety.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahn, J., Balasubramaniam, V. M., & Yousef, A. E. (2007). Inactivation kinetics of selected aerobic and anaerobic bacterial surrogate spores by pressure-assisted thermal processing. International Journal of Food Microbiology, 113, 321–329.

    Article  CAS  Google Scholar 

  • Akhtar, S., Paredes-Sabja, D., Torres, J. A., & Sarker, M. R. (2009). Strategy to inactivate Clostridium perfringens spores in meat products. Food Microbiology, 26, 272–277.

    Article  CAS  Google Scholar 

  • Ananta, E., Heinz, V., Schluter, O., & Knorr, D. (2001). Kinetic studies on high-pressure inactivation of Bacillus stearothermophilus spores suspended in food matrices. Innovative Food Science and Emerging Technologies, 2, 261–272.

    Article  Google Scholar 

  • Bigelow, W. D. (1921). The logarithmic nature of thermal death time curves. Journal of Infectious Diseases, 29, 528–536.

    Article  Google Scholar 

  • Black, E. P., Setlow, P., Hocking, A. D., Stewart, C. M., Kelly, A. L., & Hoover, D. E. (2007). Response of spores to high-pressure processing. Comprehensive Reviews in Food Science and Food Safety, 6, 103–119.

    Article  CAS  Google Scholar 

  • Bull, M. K., Olivier, S. A., van Diepenbeek, R. J., Kormelink, F., & Chapman, B. (2009). Synergistic inactivation of spores of proteolytic Clostridium botulinum strains by high pressure and heat is strain and product dependent. Applied and Environmental Microbiology, 75, 434–445.

    Article  CAS  Google Scholar 

  • Campanella, O. H., & Peleg, M. (2001). Theoretical comparison of a new and the traditional method to calculate Clostridium botulinum survival during thermal inactivation. Journal of the Science of Food and Agriculture, 81, 1069–1076.

    Article  CAS  Google Scholar 

  • Chen, H., & Hoover, D. G. (2003). Modeling the combined effect of high hydrostatic pressure and mild heat on the inactivation kinetics of Listeria monocytogenes Scott A in whole milk. Innovative Food Science and Emerging Technologies, 4, 25–34.

    Article  Google Scholar 

  • Corradini, M. G., Normand, M. D., & Peleg, M. (2006). Expressing the equivalence of non-isothermal and isothermal heat sterilization processes. Journal of the Science of Food and Agriculture, 86, 785–792.

    Article  CAS  Google Scholar 

  • Farkas, D., Hoover, D. (2000). High pressure processing. In Kinetics of microbial inactivation for alternative food processing technologies. Journal of Food Science Special Supplement, 65, 47–64

    Google Scholar 

  • Gola, S., Foman, C., Carpi, G., Maggi, A., Cassarà, A., & Rovere, P. (1996). Inactivation of bacterial spores in phosphate buffer and in vegetable cream treated with high pressures. In R. Hayashi & C. Balny (Eds.), High pressure bioscience and biotechnology (pp. 253–259). Amsterdam: Elsevier Science.

    Google Scholar 

  • Grauwet, T., Van der Plancken, I., Vervoort, L., Hendrickx, M. E., & Van Loey, A. (2010). Mapping temperature uniformity in industrial scale HP equipment using enzymatic pressure–temperature–time indicators. Journal of Food Engineering, 98, 93–102.

    Article  CAS  Google Scholar 

  • Hartmann, C., & Delgado, A. (2003). The influence of transport phenomena during high-pressure processing of packed food on the uniformity of enzyme inactivation. Biotechnology and Bioengineering, 82, 725–735.

    Article  CAS  Google Scholar 

  • Hartmann, C., & Delgado, A. (2005). Numerical simulation of thermal and fluid dynamical transport effects on a high pressure induced inactivation. Simulation Modeling Practice and Theory, 13, 109–118.

    Article  Google Scholar 

  • Hartmann, C., Schuhholz, J. P., Kitsubun, P., Chapleau, N., Le Bail, A., & Degado, A. (2004). Experimental and numerical analysis of the thermo fluid dynamics in a high-pressure autoclave. Innovative Food Science and Emerging Technologies, 5, 399–411.

    Article  Google Scholar 

  • Hawley, S. A. (1971). Reversible pressure–temperature denaturation of chymotrypsinogen. Biochemistry, 10, 2436–2442.

    Article  CAS  Google Scholar 

  • Heinz, V., & Knorr, D. (2001). Effect of high pressure on spores. In M. E. C. Hendrickx & D. Knorr (Eds.), Ultrahigh pressure treatment of foods (pp. 77–116). New York: Kluwer Academic.

    Chapter  Google Scholar 

  • Heldman, D. R., & Hartel, R. W. (1998). Principles of food processing (p. 28). Gaithersburg: Aspen Publishers.

    Google Scholar 

  • Hernández, A., & Cano, M. P. (1998). High-pressure and temperature effects on enzyme inactivation in tomato puree. Journal of Agricultural and Food Chemistry, 46, 266–270.

    Article  Google Scholar 

  • Juliano, P., Knoerzer, K., Fryer, P. J., & Versteeg, C. (2009). C. botulinum inactivation kinetics implemented in a computational model of a high-pressure sterilization process. Biotechnology Progress, 25, 163–175.

    Article  CAS  Google Scholar 

  • Khurana, M., & Karwe, M. V. (2009). Numerical prediction of temperature distribution and measurement of temperature in a high hydrostatic pressure food processor. Food and Bioprocess Technology, 2, 279–290.

    Article  Google Scholar 

  • Knoerzer, K., Buckow, R., Chapman, B., Juliano, B., & Versteeg, C. (2010). Carrier optimization in a pilot-scale high pressure sterilization plant—an iterative CFD approach employing an integrated temperature distributor (ITD). Journal of Food Engineering, 97, 199–207.

    Article  Google Scholar 

  • Koutchma, T., Guo, B., Patazca, E., & Parisi, B. (2005). High pressure high temperature sterilization: from kinetics analysis to process verification. Journal of Food Process Engineering, 28, 610–629.

    Article  Google Scholar 

  • Leadley, C., Tucker, G., & Fryer, P. (2008). A comparative study of high pressure sterilization and conventional thermal sterilization: quality effects in green beans. Innovative Food Science and Emerging Technologies, 9, 70–79.

    Article  CAS  Google Scholar 

  • Ly-Nguyen, B., Van Loey, A. M., Smout, C., Özcan, S. E., Fachin, D., Verlent, I., Vu Truong, S., Duvetter, T., Hendrickx, M. E. (2003). Mild-heat and high-pressure inactivation of carrot pectin methylesterase: a kinetic study. Journal of Food Science, 68, 1377–1383.

  • Maggi, A., Gola, S., Rovere, P., Miglioli, L., Dall’aglio, G., & Lonneborg, N. G. (1996). Effects of combined high pressure-temperature treatments on Clostridium sporogenes spores in liquid media. Industrial Conserve, 71, 8–14.

    Google Scholar 

  • Margosch, D., Ehrmann, M. A., Gänzle, M. G., & Vogel, R. F. (2004a). Comparison of pressure and heat resistance of Clostridium botulinum and other endospores in mashed carrots. Journal of Food Protection, 67, 2530–2537.

    Google Scholar 

  • Margosch, D., Gänzle, M. G., Ehrmann, M. A., & Vogel, R. F. (2004b). Pressure inactivation of Bacillus endospores. Applied and Environmental Microbiology, 70, 7321–7328.

    Article  CAS  Google Scholar 

  • Margosch, D., Ehrmann, M. A., Buckow, R., Heinz, V., Vogel, R. F., & Gänzle, M. G. (2006). High-pressure-mediated survival of Clostridium botulinum and Bacillus amyloliquefaciens endospores at high temperature. Applied and Environmental Microbiology, 72, 3476–3481.

    Article  CAS  Google Scholar 

  • Nguyen, L. T., Tay, A., Balasubramaniam, V. M., Legan, J. D., Turek, E. J., & Gupta, R. (2010). Evaluating the impact of thermal and pressure treatment in preserving textural quality of selected foods. LWT—Food Science and Technology, 43, 525–534.

    CAS  Google Scholar 

  • Patazca, E., Koutchma, T., & Ramaswamy, H. (2006). Inactivation kinetics of Geobacillus stearothermophilus spores in water using high-pressure processing at elevated temperatures. Journal of Food Science, 71, M110–M116.

    Article  CAS  Google Scholar 

  • Patazca, E., Koutchma, T., & Balasubramaniam, V. M. (2007). Quasi-adiabatic temperature increase during high pressure processing of selected foods. Journal of Food Engineering, 80(1), 199–205.

    Article  Google Scholar 

  • Pflug, I. J. (1995). Microbiology and engineering of sterilization processes. Minneapolis: Environmental Sterilization Laboratory.

    Google Scholar 

  • Rajan, S., Ahn, J., Balasubramaniam, V. M., & Yousef, A. E. (2006a). Combined pressure–thermal inactivation kinetics of Bacillus amyloliquefaciens spores in egg patty mince. Journal of Food Protection, 69, 853–860.

    CAS  Google Scholar 

  • Rajan, S., Pandrangi, S., Balasubramaniam, V. M., & Yousef, A. E. (2006b). Inactivation of Bacillus stearothermophilus spores in egg patties by pressure-assisted thermal processing. LWT—Food Science and Technology, 39, 844–851.

    CAS  Google Scholar 

  • Ratphitagsanti, W., Ahn, J., Balasubramaniam, V. M., & Yousef, A. E. (2009). Influence of pressurization rate and pressure pulsing on the inactivation of Bacillus amyloliquefaciens spores during pressure-assisted thermal processing. Journal of Food Protection, 72, 775–782.

    Google Scholar 

  • Rauh, C., Baars, A., & Delgado, A. (2009). Uniformity of enzyme inactivation in a short-time high-pressure process. Journal of Food Engineering, 91, 154–163.

    Google Scholar 

  • Reddy, N. R., Solomon, H. M., Tetzloff, R. C., & Rhodehamel, E. J. (2003). Inactivation of Clostridium botulinum type A spores by high-pressure processing at elevated temperatures. Journal of Food Protection, 66, 1402–1407.

    CAS  Google Scholar 

  • Rovere, P., Gola, S., Maggi, A., Scaramuzza, N., & Miglioli, L. (1998). Studies on bacterial spores by combined pressure-heat treatments: possibility to sterilize low-acid foods. In N. S. Isaacs (Ed.), High pressure food science, bioscience and chemistry (pp. 354–363). Cambridge: The Royal Society of Chemistry.

    Chapter  Google Scholar 

  • Sale, A. J. H., Gould, G. W., & Hamilton, W. A. (1970). Inactivation of bacterial spores by hydrostatic pressure. Journal of General Microbiology, 60, 323–334.

    Article  CAS  Google Scholar 

  • Smelt, J. P. P. M. (1998). Recent advances in the microbiology of high pressure processing. Trends in Food Science and Technology, 9, 152–158.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support for the research was provided in part through a grant from The Ohio Agricultural Research and Development Center (OARDC) and the Center for Advanced Processing and Packaging Studies (CAPPS). References to commercial products or trade names are made with the understanding that no endorsement or discrimination by The Ohio State University is implied.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Balasubramaniam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nguyen, L.T., Balasubramaniam, V.M. & Ratphitagsanti, W. Estimation of Accumulated Lethality Under Pressure-Assisted Thermal Processing. Food Bioprocess Technol 7, 633–644 (2014). https://doi.org/10.1007/s11947-013-1140-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-013-1140-6

Keywords

Navigation