Skip to main content

Advertisement

Log in

Sarcopenia and the Common Mental Disorders: a Potential Regulatory Role of Skeletal Muscle on Brain Function?

  • Nutrition, Exercise, and Lifestyle in Osteoporosis (CM Weaver and R Daly, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

While it is understood that body composition impacts on physical conditions, such as diabetes and cardiovascular disease, it is only now apparent that body composition might play a role in the genesis of common mental disorders, depression and anxiety. Sarcopenia occurs in ageing and comprises a progressive decline in muscle mass, strength and function, leading to frailty, decreased independence and poorer quality of life. This review presents an emerging body of evidence to support the hypothesis that shared pathophysiological pathways for sarcopenia and the common mental disorders constitute links between skeletal muscle and brain function. Contracting skeletal muscle secretes neurotrophic factors that are known to play a role in mood and anxiety, and have the dual role of nourishing neuronal growth and differentiation, while protecting the size and number of motor units in skeletal muscle. Furthermore, skeletal muscle activity has important immune and redox effects that impact behaviour and reduce muscle catabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Luppino FS, de Wit LM, Bouvy PF, Stijnen T, Cuijpers P, Penninx BW, et al. Overweight, obesity, and depression: a systematic review and meta-analysis of longitudinal studies. Arch Gen Psychiatry. 2010;67:220–9.

    Article  PubMed  Google Scholar 

  2. Lykouras L, Michopoulos J. Anxiety disorders and obesity. Psychiatriki. 2011;22:307–13.

    CAS  PubMed  Google Scholar 

  3. Rosenberg IH. Sarcopenia: origins and clinical relevance. J Nutr. 1997;127(Suppl):990S–1.

    CAS  PubMed  Google Scholar 

  4. Janssen I, Heymsfield SB, Ross R. Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability. J Am Geriatr Soc. 2002;50:889–96.

    Article  PubMed  Google Scholar 

  5. Gould H, Brennan SL, Kotowicz MA, Nicholson GC, Pasco JA. Total and appendicular lean mass reference ranges for Australian men and women: the Geelong Osteoporosis Study. Calcif Tissue Int. 2014;94(4):363–72. Provides normative data for low lean mass.

    Article  CAS  PubMed  Google Scholar 

  6. Roubenoff R. Sarcopenia: a major modifiable cause of frailty in the elderly. J Nutr Health Aging. 2000;4:140–2.

    CAS  PubMed  Google Scholar 

  7. Sakuma K, Yamaguchi A. Molecular mechanisms in aging and current strategies to counteract sarcopenia. Curr Aging Sci. 2011;3:90–101.

    Article  Google Scholar 

  8. Koltun DO, Marquart TA, Shenk KD, Elzein E, Li Y, Nguyen M, et al. New fatty acid oxidation inhibitors with increased potency lacking adverse metabolic and electrophysiological properties. Bioorg Med Chem Lett. 2004;14:549–52.

    Article  CAS  PubMed  Google Scholar 

  9. Maes M, Ruckoanich P, Chang YS, Mahanonda N, Berk M. Multiple aberrations in shared inflammatory and oxidative & nitrosative stress (IO&NS) pathways explain the co-association of depression and cardiovascular disorder (CVD), and the increased risk for CVD and due mortality in depressed patients. Prog Neuropsychopharmacol Biol Psychiatry. 2011;35:769–83.

    Article  CAS  PubMed  Google Scholar 

  10. Ni Mhaolain AM, Fan CW, Romero-Ortuno R, Cogan L, Cunningham C, Kenny RA, et al. Frailty, depression, and anxiety in later life. Int Psychogeriatr. 2012;24:1265–74. Primary data that supports the contention that there is a link between frailty and the common mental disorders.

    Article  PubMed  Google Scholar 

  11. Fried LP, Tangen CM, Walston J, Newman AB, Hirsch C, Gottdiener J, et al. Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci. 2001;56:M146–56.

    Article  CAS  PubMed  Google Scholar 

  12. Kim NH, Kim HS, Eun CR, Seo JA, Cho HJ, Kim SG, et al. Depression is associated with sarcopenia, not central obesity, in elderly Korean men. J Am Geriatr Soc. 2011;59:2062–8.

    Article  PubMed  Google Scholar 

  13. Gariballa S, Alessa A. Sarcopenia: prevalence and prognostic significance in hospitalized patients. Clin Nutr. 2013;32:772–6.

    Article  PubMed  Google Scholar 

  14. Sparrow D, Gottlieb DJ, Demolles D, Fielding RA. Increases in muscle strength and balance using a resistance training program administered via a telecommunications system in older adults. J Gerontol A Biol Sci Med Sci. 2011;66:1251–7.

    Article  PubMed  Google Scholar 

  15. Levinger I, Selig S, Goodman C, Jerums G, Stewart A, Hare DL. Resistance training improves depressive symptoms in individuals at high risk for type 2 diabetes. J Strength Cond Res. 2011;25:2328–33.

    Article  PubMed  Google Scholar 

  16. Binder DK, Scharfman HE. Brain-derived neurotrophic factor. Growth Factors. 2004;22:123–31.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Campbell S, Marriott M, Nahmias C, MacQueen GM. Lower hippocampal volume in patients suffering from depression: a meta-analysis. Am J Psychiatry. 2004;161:598–607.

    Article  PubMed  Google Scholar 

  18. Malberg JE, Eisch AJ, Nestler EJ, Duman RS. Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J Neurosci. 2000;20:9104–10.

    CAS  PubMed  Google Scholar 

  19. Mousavi K, Jasmin BJ. BDNF is expressed in skeletal muscle satellite cells and inhibits myogenic differentiation. J Neurosci. 2006;26:5739–49.

    Article  CAS  PubMed  Google Scholar 

  20. Grounds MD. Therapies for sarcopenia and regeneration of old skeletal muscles: more a case of old tissue architecture than old stem cells. Bioarchitecture. 2014;4:81–7.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Ren JC, Fan XL, Song XA, Shi L. Decreased neurotrophin-3 expression of intrafusal muscle fibers in rat soleus muscles under simulated weightlessness. Sheng Li Xue Bao. 2011;63:75–80.

    CAS  PubMed  Google Scholar 

  22. Molendijk ML, Spinhoven P, Polak M, Bus BA, Penninx BW, Elzinga BM. Serum BDNF concentrations as peripheral manifestations of depression: evidence from a systematic review and meta-analyses on 179 associations (N = 9484). Mol Psychiatry. 2014;19:791–800.

    Article  CAS  PubMed  Google Scholar 

  23. Polyakova M, Stuke K, Schuemberg K, Mueller K, Schoenknecht P, Schroeter ML. BDNF as a biomarker for successful treatment of mood disorders: a systematic & quantitative meta-analysis. J Affect Disord. 2015;174:432–40.

    Article  CAS  PubMed  Google Scholar 

  24. Pae CU, Marks DM, Han C, Patkar AA, Steffens D. Does neurotropin-3 have a therapeutic implication in major depression? Int J Neurosci. 2008;118:1515–22.

    Article  CAS  PubMed  Google Scholar 

  25. Khansari N, Shakiba Y, Mahmoudi M. Chronic inflammation and oxidative stress as a major cause of age-related diseases and cancer. Recent Patents Inflamm Allergy Drug Discov. 2009;3:73–80.

    Article  CAS  Google Scholar 

  26. Goldberg EL, Dixit VD. Drivers of age-related inflammation and strategies for healthspan extension. Immunol Rev. 2015;265:63–74.

    Article  CAS  PubMed  Google Scholar 

  27. Moylan S, Berk M, Dean OM, Samuni Y, Williams LJ, O’Neil A, et al. Oxidative & nitrosative stress in depression: why so much stress? Neurosci Biobehav Rev. 2014;45:46–62. Presents mechanistic pathways for oxidative and nitrosative stress in depression.

    Article  CAS  PubMed  Google Scholar 

  28. Schaap LA, Pluijm SM, Deeg DJ, Harris TB, Kritchevsky SB, Newman AB, et al. Higher inflammatory marker levels in older persons: associations with 5-year change in muscle mass and muscle strength. J Gerontol A Biol Sci Med Sci. 2009;64:1183–9.

    Article  PubMed  Google Scholar 

  29. Coppack SW. Pro-inflammatory cytokines and adipose tissue. Proc Nutr Soc. 2001;60:349–56.

    Article  CAS  PubMed  Google Scholar 

  30. Cesari M, Kritchevsky SB, Baumgartner RN, Atkinson HH, Penninx BW, Lenchik L, et al. Sarcopenia, obesity, and inflammation—results from the trial of angiotensin converting enzyme inhibition and novel cardiovascular risk factors study. Am J Clin Nutr. 2005;82:428–34.

    CAS  PubMed  Google Scholar 

  31. Pasco JA, Nicholson GC, Brennan SL, Kotowicz MA. Prevalence of obesity and the relationship between the body mass index and body fat: cross-sectional, population-based data. PLoS One. 2012;7:e29580.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Baumgartner RN. Body composition in healthy aging. Ann N Y Acad Sci. 2000;904:437–48.

    Article  CAS  PubMed  Google Scholar 

  33. Stenholm S, Harris TB, Rantanen T, Visser M, Kritchevsky SB, Ferrucci L. Sarcopenic obesity: definition, cause and consequences. Curr Opin Clin Nutr Metab Care. 2008;11:693–700.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Pasini E, Aquilani R, Dioguardi FS, D’Antona G, Gheorghiade M, Taegtmeyer H. Hypercatabolic syndrome: molecular basis and effects of nutritional supplements with amino acids. Am J Cardiol. 2008;101:11E–5.

    Article  CAS  PubMed  Google Scholar 

  35. Rieu I, Magne H, Savary-Auzeloux I, Averous J, Bos C, Peyron MA, et al. Reduction of low grade inflammation restores blunting of postprandial muscle anabolism and limits sarcopenia in old rats. J Physiol. 2009;587:5483–92.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Chung HY, Cesari M, Anton S, Marzetti E, Giovannini S, Seo AY, et al. Molecular inflammation: underpinnings of aging and age-related diseases. Ageing Res Rev. 2009;8:18–30.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Reid MB, Li YP. Tumor necrosis factor-alpha and muscle wasting: a cellular perspective. Respir Res. 2001;2:269–72.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Phillips T, Leeuwenburgh C. Muscle fiber specific apoptosis and TNF-alpha signaling in sarcopenia are attenuated by life-long calorie restriction. FASEB J. 2005;19:668–70.

    CAS  PubMed  Google Scholar 

  39. Agostini F, Dalla Libera L, Rittweger J, Mazzucco S, Jurdana M, Mekjavic IB, et al. Effects of inactivity on human muscle glutathione synthesis by a double-tracer and single-biopsy approach. J Physiol. 2010;588:5089–104.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Berk M, Williams LJ, Jacka FN, O’Neil A, Pasco JA, Moylan S, et al. So depression is an inflammatory disease, but where does the inflammation come from? BMC Med. 2013;11:200. Presents mechanistic pathways for neuroinflammation.

    PubMed Central  PubMed  Google Scholar 

  41. Connor TJ, Leonard BE. Depression, stress and immunological activation: the role of cytokines in depressive disorders. Life Sci. 1998;62:583–606.

    Article  CAS  PubMed  Google Scholar 

  42. Berk M, Wadee AA, Kuschke RH, O’Neill-Kerr A. Acute phase proteins in major depression. J Psychosom Res. 1997;43:529–34.

    Article  CAS  PubMed  Google Scholar 

  43. Salim S, Sarraj N, Taneja M, Saha K, Tejada-Simon MV, Chugh G. Moderate treadmill exercise prevents oxidative stress-induced anxiety-like behavior in rats. Behav Brain Res. 2010;208:545–52.

    Article  CAS  PubMed  Google Scholar 

  44. Salim S, Asghar M, Chugh G, Taneja M, Xia Z, Saha K. Oxidative stress: a potential recipe for anxiety, hypertension and insulin resistance. Brain Res. 2010;1359:178–85.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Salim S, Asghar M, Taneja M, Hovatta I, Chugh G, Vollert C, et al. Potential contribution of oxidative stress and inflammation to anxiety and hypertension. Brain Res. 2011;1404:63–71.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Herken H, Gurel A, Selek S, Armutcu F, Ozen ME, Bulut M, et al. Adenosine deaminase, nitric oxide, superoxide dismutase, and xanthine oxidase in patients with major depression: impact of antidepressant treatment. Arch Med Res. 2007;38:247–52.

    Article  CAS  PubMed  Google Scholar 

  47. Yanik M, Erel O, Katoi M. The relationship between potency of oxidative stress and severity of depression. Acta Neuropsychiatr. 2004;16:200–3.

    Article  Google Scholar 

  48. Bayramgurler D, Karson A, Ozer C, Utkan T. Effects of long-term etanercept treatment on anxiety- and depression-like neurobehaviors in rats. Physiol Behav. 2013;119:145–8.

    Article  CAS  PubMed  Google Scholar 

  49. Tyring S, Gottlieb A, Papp K, Gordon K, Leonardi C, Wang A, et al. Etanercept and clinical outcomes, fatigue, and depression in psoriasis: double-blind placebo-controlled randomised phase III trial. Lancet. 2006;367:29–35.

    Article  CAS  PubMed  Google Scholar 

  50. Setiawan E, Wilson AA, Mizrahi R, Rusjan PM, Miler L, Rajkowska G, et al. Role of translocator protein density, a marker of neuroinflammation, in the brain during major depressive episodes. JAMA Psychiatry. 2015;72:268–75.

    Article  PubMed  Google Scholar 

  51. Pasco JA, Nicholson GC, Williams LJ, Jacka FN, Henry MJ, Kotowicz MA, et al. Association of high-sensitivity C-reactive protein with de novo major depression. Br J Psychiatry. 2010;197:372–7.

    Article  PubMed  Google Scholar 

  52. Stafford L, Berk M. The use of statins after a cardiac intervention is associated with reduced risk of subsequent depression: proof of concept for the inflammatory and oxidative hypotheses of depression? J Clin Psychiatry. 2012;72:1229–35.

    Article  Google Scholar 

  53. Gougol A, Zareh-Mohammadi N, Raheb S, Farokhnia M, Salimi S, Iranpour N, et al. Simvastatin as an adjuvant therapy to fluoxetine in patients with moderate to severe major depression: a double-blind placebo-controlled trial. J Psychopharmacol. 2015;29:575–81.

    Article  CAS  PubMed  Google Scholar 

  54. Pasco JA, Jacka FN, Williams LJ, Henry MJ, Nicholson GC, Kotowicz MA, et al. Clinical implications of the cytokine hypothesis of depression: the association between use of statins and aspirin and the risk of major depression. Psychother Psychosom. 2010;79:323–5.

    Article  PubMed  Google Scholar 

  55. Berk M, Copolov DL, Dean O, Lu K, Jeavons S, Schapkaitz I, et al. N-acetyl cysteine for depressive symptoms in bipolar disorder—a double-blind randomized placebo-controlled trial. Biol Psychiatry. 2008;64:468–75.

    Article  CAS  PubMed  Google Scholar 

  56. Berk M, Ng F, Dean O, Dodd S, Bush AI. Glutathione: a novel treatment target in psychiatry. Trends Pharmacol Sci. 2008;29:346–51.

    Article  CAS  PubMed  Google Scholar 

  57. Dodd S, Maes M, Anderson G, Dean OM, Moylan S, Berk M. Putative neuroprotective agents in neuropsychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry. 2013;42:135–45.

    Article  CAS  PubMed  Google Scholar 

  58. Scott D, Blizzard L, Fell J, Jones G. Ambulatory activity, body composition, and lower-limb muscle strength in older adults. Med Sci Sports Exerc. 2009;41:383–9.

    Article  PubMed  Google Scholar 

  59. Pasco JA, Williams LJ, Jacka FN, Henry MJ, Coulson CE, Brennan SL, et al. Habitual physical activity and the risk for depressive and anxiety disorders among older men and women. Int Psychogeriatr. 2011;23:292–8.

    Article  PubMed  Google Scholar 

  60. Chodzko-Zajko WJ, Proctor DN, Fiatarone Singh MA, Minson CT, Nigg CR, Salem GJ, et al. American college of sports medicine position stand. Exercise and physical activity for older adults. Med Sci Sports Exerc. 2009;41:1510–30.

    Article  PubMed  Google Scholar 

  61. Thomson D, Turner A, Lauder S, Gigler ME, Berk L, Singh AB, et al. A brief review of exercise, bipolar disorder, and mechanistic pathways. Front Psychol. 2015;6:147.

    Article  PubMed Central  PubMed  Google Scholar 

  62. Ensari I, Greenlee TA, Motl RW, Petruzzello SJ. Meta-analysis of acute exercise effects on state anxiety: an update of randomized controlled trials over the past 25 years. Depress Anxiety. 2015. doi:10.1002/da.22370.

  63. Rebar AL, Stanton R, Geard D, Short C, Duncan MJ, Vandelanotte C. A meta-meta-analysis of the effect of physical activity on depression and anxiety in non-clinical adult populations. Health Psychol Rev. 2015;5:1–78. Provides evidence of the therapeutic benefits of physical activity on the common mental disorders.

    Article  Google Scholar 

  64. Mammen G, Faulkner G. Physical activity and the prevention of depression: a systematic review of prospective studies. Am J Prev Med. 2013;45:649–57. Provides evidence of the preventive effects of physical activity on the onset of depression.

    Article  PubMed  Google Scholar 

  65. Matthews VB, Astrom MB, Chan MH, Bruce CR, Krabbe KS, Prelovsek O, et al. Brain-derived neurotrophic factor is produced by skeletal muscle cells in response to contraction and enhances fat oxidation via activation of AMP-activated protein kinase. Diabetologia. 2009;52:1409–18.

    Article  CAS  PubMed  Google Scholar 

  66. Gold SM, Schulz KH, Hartmann S, Mladek M, Lang UE, Hellweg R, et al. Basal serum levels and reactivity of nerve growth factor and brain-derived neurotrophic factor to standardized acute exercise in multiple sclerosis and controls. J Neuroimmunol. 2003;138:99–105.

    Article  CAS  PubMed  Google Scholar 

  67. Zoladz JA, Pilc A, Majerczak J, Grandys M, Zapart-Bukowska J, Duda K. Endurance training increases plasma brain-derived neurotrophic factor concentration in young healthy men. J Physiol Pharmacol. 2008;59 Suppl 7:119–32.

    PubMed  Google Scholar 

  68. Correia PR, Scorza FA, Gomes da Silva S, Pansani A, Toscano-Silva M, de Almeida AC, et al. Increased basal plasma brain-derived neurotrophic factor levels in sprint runners. Neurosci Bull. 2011;27:325–9.

    Article  CAS  PubMed  Google Scholar 

  69. Carro E, Trejo JL, Busiguina S, Torres-Aleman I. Circulating insulin-like growth factor I mediates the protective effects of physical exercise against brain insults of different etiology and anatomy. J Neurosci. 2001;21:5678–84.

    CAS  PubMed  Google Scholar 

  70. Tomori K, Kobayash R, Koseki T, Ohta Y. Effect of neuromuscular electrical stimulation of denervated muscle on the mRNA expression of IGFs in rat skeletal muscle and sciatic nerve. J Phys Ther Sci. 2009;21:269–73.

    Article  Google Scholar 

  71. Febbraio MA, Pedersen BK. Muscle-derived interleukin-6: mechanisms for activation and possible biological roles. FASEB J. 2002;16:1335–47.

    Article  CAS  PubMed  Google Scholar 

  72. Walsh NP, Gleeson M, Shephard RJ, Woods JA, Bishop NC, Fleshner M, et al. Position statement. Part one: Immune function and exercise. Exerc Immunol Rev. 2011;17:6–63.

    PubMed  Google Scholar 

  73. Makar TK, Trisler D, Sura KT, Sultana S, Patel N, Bever CT. Brain derived neurotrophic factor treatment reduces inflammation and apoptosis in experimental allergic encephalomyelitis. J Neurol Sci. 2008;270:70–6.

    Article  CAS  PubMed  Google Scholar 

  74. Stuart MJ, Baune BT. Depression and type 2 diabetes: inflammatory mechanisms of a psychoneuroendocrine co-morbidity. Neurosci Biobehav Rev. 2012;36:658–76.

    Article  CAS  PubMed  Google Scholar 

  75. Maes M, Anderson G, Kubera M, Berk M. Targeting classical IL-6 signalling or IL-6 trans-signalling in depression? Expert Opin Ther Targets. 2014;18:495–512.

    Article  CAS  PubMed  Google Scholar 

  76. Stookey JD, Adair L, Stevens J, Popkin BM. Patterns of long-term change in body composition are associated with diet, activity, income and urban residence among older adults in China. J Nutr. 2001;131:2433S–40.

    CAS  PubMed  Google Scholar 

  77. Meng X, Zhu K, Devine A, Kerr DA, Binns CW, Prince RL. A 5-year cohort study of the effects of high protein intake on lean mass and BMC in elderly postmenopausal women. J Bone Miner Res. 2009;24:1827–34.

    Article  CAS  PubMed  Google Scholar 

  78. Houston DK, Nicklas BJ, Ding J, Harris TB, Tylavsky FA, Newman AB, et al. Dietary protein intake is associated with lean mass change in older, community-dwelling adults: the Health, Aging, and Body Composition (Health ABC) Study. Am J Clin Nutr. 2008;87:150–5.

    CAS  PubMed  Google Scholar 

  79. Jacka FN, Pasco JA, Williams LJ, Mann N, Hodge A, Brazionis L, et al. Red meat consumption and mood and anxiety disorders. Psychother Psychosom. 2012;81:196–8.

    Article  PubMed  Google Scholar 

  80. Norat T, Dossus L, Rinaldi S, Overvad K, Gronbaek H, Tjonneland A, et al. Diet, serum insulin-like growth factor-I and IGF-binding protein-3 in European women. Eur J Clin Nutr. 2007;61:91–8.

    Article  CAS  PubMed  Google Scholar 

  81. Cesari M, Pahor M, Bartali B, Cherubini A, Penninx BW, Williams GR, et al. Antioxidants and physical performance in elderly persons: the Invecchiare in Chianti (InCHIANTI) study. Am J Clin Nutr. 2004;79:289–94.

    CAS  PubMed  Google Scholar 

  82. Kim J, Lee Y, Kye S, Chung YS, Kim KM. Association of vegetables and fruits consumption with sarcopenia in older adults: the Fourth Korea National Health and Nutrition Examination Survey. Age Ageing. 2015;44:96–102.

    Article  PubMed  Google Scholar 

  83. Jacka FN, Pasco JA, Mykletun A, Williams LJ, Hodge AM, O’Reilly SL, et al. Association of Western and traditional diets with depression and anxiety in women. Am J Psychiatry. 2010;167:305–11.

    Article  PubMed  Google Scholar 

  84. Jacka FN, Kremer PJ, Berk M, de Silva-Sanigorski AM, Moodie M, Leslie ER, et al. A prospective study of diet quality and mental health in adolescents. PLoS One. 2011;6:e24805.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  85. Jacka FN, Pasco JA, Mykletun A, Williams LJ, Nicholson GC, Kotowicz MA, et al. Diet quality in bipolar disorder in a population-based sample of women. J Affect Disord. 2011;129:332–7.

    Article  PubMed  Google Scholar 

  86. Tabung FK, Steck SE, Zhang J, Ma Y, Liese AD, Agalliu I, et al. Construct validation of the dietary inflammatory index among postmenopausal women. Ann Epidemiol. 2015;25:398–405.

    Article  PubMed  Google Scholar 

  87. Pfeifer M, Begerow B, Minne HW. Vitamin D and muscle function. Osteoporos Int. 2002;13:187–94.

    Article  CAS  PubMed  Google Scholar 

  88. Anglin RE, Samaan Z, Walter SD, McDonald SD. Vitamin D deficiency and depression in adults: systematic review and meta-analysis. Br J Psychiatry. 2013;202:100–7.

    Article  PubMed  Google Scholar 

  89. Correale J, Ysrraelit MC, Gaitan MI. Immunomodulatory effects of Vitamin D in multiple sclerosis. Brain. 2009;132:1146–60.

    Article  PubMed  Google Scholar 

  90. Castillo EM, Goodman-Gruen D, Kritz-Silverstein D, Morton DJ, Wingard DL, Barrett-Connor E. Sarcopenia in elderly men and women: the Rancho Bernardo study. Am J Prev Med. 2003;25:226–31.

    Article  PubMed  Google Scholar 

  91. Lee JS, Auyeung TW, Kwok T, Lau EM, Leung PC, Woo J. Associated factors and health impact of sarcopenia in older Chinese men and women: a cross-sectional study. Gerontology. 2007;53:404–10.

    Article  PubMed  Google Scholar 

  92. Landi F, Liperoti R, Fusco D, Mastropaolo S, Quattrociocchi D, Proia A, et al. Prevalence and risk factors of sarcopenia among nursing home older residents. J Gerontol A Biol Sci Med Sci. 2012;67:48–55.

    Article  PubMed  Google Scholar 

  93. Moylan S, Gustavson K, Karevold E, Overland S, Jacka FN, Pasco JA, et al. The impact of smoking in adolescence on early adult anxiety symptoms and the relationship between infant vulnerability factors for anxiety and early adult anxiety symptoms: the TOPP Study. PLoS One. 2013;8:e63252.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  94. Pasco JA, Williams LJ, Jacka FN, Ng F, Henry MJ, Nicholson GC, et al. Tobacco smoking as a risk factor for major depressive disorder: population-based study. Br J Psychiatry. 2008;193:322–6.

    Article  PubMed  Google Scholar 

  95. Steffl M, Bohannon RW, Petr M, Kohlikova E, Holmerova I. Relation between cigarette smoking and sarcopenia - meta analysis. Physiol Res. 2014.

  96. Degens H, Gayan-Ramirez G, van Hees HW. Smoking-induced skeletal muscle dysfunction: from evidence to mechanisms. Am J Respir Crit Care Med. 2015;191:620–5.

    Article  CAS  PubMed  Google Scholar 

  97. Ozguner F, Koyu A, Cesur G. Active smoking causes oxidative stress and decreases blood melatonin levels. Toxicol Ind Health. 2005;21:21–6.

    Article  CAS  PubMed  Google Scholar 

  98. Preciado D, Kuo E, Ashktorab S, Manes P, Rose M. Cigarette smoke activates NFkappaB-mediated Tnf-alpha release from mouse middle ear cells. Laryngoscope. 2010;120:2508–15.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  99. Rom O, Kaisari S, Aizenbud D, Reznick AZ. Sarcopenia and smoking: a possible cellular model of cigarette smoke effects on muscle protein breakdown. Ann N Y Acad Sci. 2012;1259:47–53.

    Article  CAS  PubMed  Google Scholar 

  100. Rom O, Kaisari S, Aizenbud D, Reznick AZ. The effects of acetaldehyde and acrolein on muscle catabolism in C2 myotubes. Free Radic Biol Med. 2013;65:190–200.

    Article  CAS  PubMed  Google Scholar 

  101. Moylan S, Jacka FN, Pasco JA, Berk M. How cigarette smoking may increase the risk of anxiety symptoms and anxiety disorders: a critical review of biological pathways. Brain Behav. 2013;3:302–26.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

LJW is supported by a NHMRC Career Development Fellowship (1064272); FNJ is supported by a post-graduate scholarship from the Australian Rotary Health Fund and a Postdoctoral Training Fellowship from the NHMRC; SLB-O is supported by an Alfred Deakin Postdoctoral Research Fellowship; MB is supported by a NHMRC Senior Principal Research Fellowship. These funding organisations played no role in the preparation, review and approval of the manuscript.

Compliance with Ethics Guidelines

Conflict of Interest

JAP has received grants from the National Health and Medical Research Council (NHMRC), the BUPA Foundation and the Western Alliance; LJW has received grants from Eli Lilly, Pfizer, The University of Melbourne, Deakin University and the NHMRC; FNJ has received grants from the Brain and Behaviour Research Institute, the NHMRC, Australian Rotary Health, the Geelong Medical Research Foundation, the Ian Potter Foundation, Eli Lilly, the Meat and Livestock Board and The University of Melbourne and has received speakers honoraria from Sanofi-Synthelabo, Janssen Cilag, Servier, Pfizer, Health Ed, Network Nutrition, Angelini Farmaceutica, and Eli Lilly; NS has received grants from the NHMRC, Financial Markets Foundation for Children and Deakin University; SLB-O has received grants from the Victorian Orthopaedic Research Trust, Arthritis Australia (Zimmer Australia), The University of Melbourne, Arthritis Victoria and the Australian Association of Gerontology, Deakin University and the City of Greater Geelong; MB has received grants from the NIH, Simons Autism Foundation, Stanley Medical Research Foundation, NHMRC and CRC for Mental Health, he has been a paid consultant for Astra Zeneca, Eli Lilly, Glaxo SmithKline, Janssen Cilag, Lundbeck and Pfizer and a paid speaker for Astra Zeneca, Eli Lilly, Glaxo SmithKline, Lundbeck and Merck; FNJ has received grants from the Brain and Behaviour Research Institute, NHMRC, Australian Rotary Health, the Meat and Livestock Board and has been a paid speaker for Sanofi-Synthelabo, Janssen Cilag, Servier and Health Ed.

Human and Animal Rights and Informed Consent

All studies by the authors involving animal and/or human subjects were performed after approval by the appropriate institutional review boards. When required, written informed consent was obtained from all participants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julie A. Pasco.

Additional information

This article is part of the Topical Collection on Nutrition, Exercise, and Lifestyle in Osteoporosis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pasco, J.A., Williams, L.J., Jacka, F.N. et al. Sarcopenia and the Common Mental Disorders: a Potential Regulatory Role of Skeletal Muscle on Brain Function?. Curr Osteoporos Rep 13, 351–357 (2015). https://doi.org/10.1007/s11914-015-0279-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-015-0279-7

Keywords

Navigation