Skip to main content

Advertisement

Log in

Fall and Fracture Risk in Sarcopenia and Dynapenia With and Without Obesity: the Role of Lifestyle Interventions

  • Nutrition, Exercise, and Lifestyle in Osteoporosis (CM Weaver and R Daly, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Due to their differing etiologies and consequences, it has been proposed that the term “sarcopenia” should revert to its original definition of age-related muscle mass declines, with a separate term, “dynapenia”, describing muscle strength and function declines. There is increasing interest in the interactions of sarcopenia and dynapenia with obesity. Despite an apparent protective effect of obesity on fracture, increased adiposity may compromise bone health, and the presence of sarcopenia and/or dynapenia (“sarcopenic obesity” and “dynapenic obesity”) may exacerbate the risk of falls and fracture in obese older adults. Weight loss interventions are likely to be beneficial for older adults with sarcopenic and dynapenic obesity but may result in further reductions in muscle and bone health. The addition of exercise including progressive resistance training and nutritional strategies, including protein and vitamin D supplementation, may optimise body composition and muscle function outcomes thereby reducing falls and fracture risk in this population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Roubenoff R. Sarcopenic obesity: does muscle loss cause fat gain? Lessons from rheumatoid arthritis and osteoarthritis. Ann N Y Acad Sci. 2000;904:553–7.

    Article  CAS  PubMed  Google Scholar 

  2. Leslie WD, Orwoll ES, Nielson CM, Morin SN, Majumdar SR, Johansson H, et al. Estimated lean mass and fat mass differentially affect femoral bone density and strength index but are not FRAX independent risk factors for fracture. J Bone Miner Res. 2014.

  3. Nielson CM, Srikanth P, Orwoll ES. Obesity and fracture in men and women: an epidemiologic perspective. J Bone Miner Res. 2012;27(1):1–10.

    Article  PubMed  Google Scholar 

  4. Rosenberg IH. Summary comments. Am J Clin Nutr. 1989;50(5):1231–3.

    Google Scholar 

  5. Baumgartner RN, Romero L, Garry PJ, Heymsfield SB, Koehler KM, Gallagher D, et al. Epidemiology of sarcopenia among the elderly in New Mexico. Am J Epidemiol. 1998;147(8):755–63.

    Article  CAS  PubMed  Google Scholar 

  6. Newman AB, Kupelian V, Visser M, Simonsick E, Goodpaster B, Nevitt M, et al. Sarcopenia: alternative definitions and associations with lower extremity function. J Am Geriatr Soc. 2003;51(11):1602–9.

    Article  PubMed  Google Scholar 

  7. Janssen I. The epidemiology of sarcopenia. Clin Geriatr Med. 2011;27(3):355–63.

    Article  PubMed  Google Scholar 

  8. Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, et al. Sarcopenia: European consensus on definition and diagnosis: report of the European Working Group on Sarcopenia in Older People. Age Ageing. 2010;39(4):412–23.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Muscaritoli M, Anker SD, Argilés J, Aversa Z, Bauer JM, Biolo G, et al. Consensus definition of sarcopenia, cachexia and pre-cachexia: joint document elaborated by Special Interest Groups (SIG) “cachexia-anorexia in chronic wasting diseases” and “nutrition in geriatrics”. Clin Nutr. 2010;29(2):154–9.

    Article  CAS  PubMed  Google Scholar 

  10. Fielding RA, Vellas B, Evans WJ, Bhasin S, Morley JE, Newman AB, et al. Sarcopenia: an undiagnosed condition in older adults. Current consensus definition: prevalence, etiology, and consequences. International Working Group on Sarcopenia. J Am Med Dir Assoc. 2011;12(4):249–56.

    Article  PubMed  Google Scholar 

  11. Morley JE, Abbatecola AM, Argiles JM, Baracos V, Bauer J, Bhasin S, et al. Sarcopenia with limited mobility: an international consensus. J Am Med Dir Assoc. 2011;12(6):403–9.

    Article  PubMed  Google Scholar 

  12. Studenski SA, Peters KW, Alley DE, Cawthon PM, McLean RR, Harris TB, et al. The FNIH sarcopenia project: rationale, study description, conference recommendations, and final estimates. J Gerontol A: Biol Med Sci. 2014;69(5):547–58. Provides the first consensus definition of sarcopenia based on evidence-based estimates, including hand grip strength cut-points which may potentially be used in diagnosis of dynapenia/dynapenic obesity.

    Article  Google Scholar 

  13. Goodpaster BH, Park SW, Harris TB, Kritchevsky SB, Nevitt M, Schwartz AV, et al. The loss of skeletal muscle strength, mass, and quality in older adults: the health, aging and body composition study. J Gerontol A Biol Sci Med Sci. 2006;61(10):1059–64.

    Article  PubMed  Google Scholar 

  14. Delmonico MJ, Harris TB, Visser M, Park SW, Conroy MB, Velasquez-Mieyer P, et al. Longitudinal study of muscle strength, quality, and adipose tissue infiltration. Am J Clin Nutr. 2009;90(6):1579–85.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Russ D, Gregg-Cornell K, Conaway M, Clark B. Evolving concepts on the age-related changes in “muscle quality”. J Cachex Sarcopenia Muscle. 2012;3(2):95–109.

    Article  Google Scholar 

  16. Visser M, Schaap LA. Consequences of sarcopenia. Clin Geriatr Med. 2011. doi:10.1016/j.cger.2011.03.006.

    PubMed  Google Scholar 

  17. Clark BC, Manini TM. Sarcopenia ≠ dynapenia. J Gerontol A Biol Sci Med Sci. 2008;6(8):829–34.

    Article  Google Scholar 

  18. Manini TM, Clark BC. Dynapenia and aging: an update. J Gerontol A: Biol Med Sci. 2012;67A(1):28–40. Provides an algorithm for the diagnosis of dynapenia in clinical settings.

    Article  Google Scholar 

  19. Heber D, Ingles S, Ashley JM, Maxwell MH, Lyons RF, Elashoff RM. Clinical detection of sarcopenic obesity by bioelectrical impedance analysis. Am J Clin Nutr. 1996;64(3):472–7.

    Google Scholar 

  20. Villareal DT, Banks M, Siener C, Sinacore DR, Klein S. Physical frailty and body composition in obese elderly men and women. Obes Res. 2004;12(6):913–20.

    Article  PubMed  Google Scholar 

  21. Jensen GL, Friedmann JM. Obesity is associated with functional decline in community-dwelling rural older persons. J Am Geriatr Soc. 2002;50(5):918–23.

    Article  PubMed  Google Scholar 

  22. Baumgartner RN, Wayne SJ, Waters DL, Janssen I, Gallagher D, Morley JE. Sarcopenic obesity predicts instrumental activities of daily living disability in the elderly. Obes Res. 2004;12(12):1995–2004.

    Article  PubMed  Google Scholar 

  23. Stenholm S, Harris TB, Rantanen T, Visser M, Kritchevsky SB, Ferrucci L. Sarcopenic obesity—definition, etiology and consequences. Curr Opin Clin Nutr Metab Care. 2008;11(6):693–700.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Bouchard DR, Janssen I. Dynapenic-obesity and physical function in older adults. J Gerontol A Biol Sci Med Sci. 2010;65(1):71–7.

    Article  PubMed  Google Scholar 

  25. Sénéchal M, Dionne IJ, Brochu M. Dynapenic abdominal obesity and metabolic risk factors in adults 50 years of age and older. J Aging Health. 2012;24(5):812–26.

    Article  PubMed  Google Scholar 

  26. Scott D, Sanders K, Aitken D, Hayes A, Ebeling PR, Jones G. Sarcopenic obesity and dynapenic obesity: 5-year associations with falls risk in middle-aged and older adults. Obesity. 2014;22(6):1568–74.

    Article  PubMed  Google Scholar 

  27. Yang M, Ding X, Luo L, Hao Q, Dong B. Disability associated with obesity, dynapenia and dynapenic-obesity in Chinese older adults. J Am Med Dir Assoc. 2014;15(2):150.e11–e16.

    Article  Google Scholar 

  28. Batsis JA, Barre LK, Mackenzie TA, Pratt SI, Lopez‐Jimenez F, Bartels SJ. Variation in the prevalence of sarcopenia and sarcopenic obesity in older adults associated with different research definitions: dual‐energy x‐ray absorptiometry data from the national health and nutrition examination survey 1999–2004. J Am Geriatr Soc. 2013.

  29. Schrager M, Metter EJ, Simonsick EM, Ble A, Bandinelli S, Lauretani F, et al. Sarcopenic obesity and inflammation in the InCHIANTI study. J Appl Physiol. 2007;102:919–25.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Waters D, Hale L, Grant A, Herbison P, Goulding A. Osteoporosis and gait and balance disturbances in older sarcopenic obese New Zealanders. Osteoporos Int. 2010;21(2):351–7.

    Article  CAS  PubMed  Google Scholar 

  31. Ilich JZ, Kelly OJ, Inglis JE, Panton LB, Duque G, Ormsbee MJ. Interrelationship among muscle, fat, and bone: connecting the dots on cellular, hormonal, and whole body levels. Ageing Res Rev. (0).

  32. Carter ND, Khan KM, Mallinson A, Janssen PA, Heinonen A, Petit MA, et al. Knee extension strength is a significant determinant of static and dynamic balance as well as quality of life in older community-dwelling women with osteoporosis. Gerontology. 2002;48(6):360–8.

    Article  PubMed  Google Scholar 

  33. Szulc P, Beck TJ, Marchand F, Delmas PD. Low skeletal muscle mass is associated with poor structural parameters of bone and impaired balance in elderly men—the MINOS study. J Bone Miner Res. 2005;20(5):721–9.

    Article  PubMed  Google Scholar 

  34. Edwards MH, Gregson CL, Patel HP, Jameson KA, Harvey NC, Sayer AA, et al. Muscle size, strength and physical performance and their associations with bone structure in the Hertfordshire Cohort Study. J Bone Miner Res. 2013;28(11):2295–304.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Samu S, Juha S, Toni R, Risto H, Sirola J. Relationship between postmenopausal osteoporosis and the components of clinical sarcopenia. Maturitas. 2013;75(2):175–80.

    Article  Google Scholar 

  36. Scott D, Hayes A, Sanders KM, Aitken D, Ebeling PR, Jones G. Operational definitions of sarcopenia and their associations with 5-year changes in falls risk in community-dwelling middle-aged and older adults. Osteoporos Int. 2014;25(1):187–93.

    Article  CAS  PubMed  Google Scholar 

  37. Di Monaco M, Castiglioni C, Vallero F, Di Monaco R, Tappero R. Sarcopenia is more prevalent in men than in women after hip fracture: a cross-sectional study of 591 inpatients. Arch Gerontol Geriatr. 2012.

  38. Sayer AA, Syddall HE, Martin HJ, Dennison EM, Anderson FH, Cooper C. Falls, sarcopenia, and growth in early life: findings from the Hertfordshire Cohort Study. Am J Epidemiol. 2006;164(7):665–71.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Furrer R, van Schoor NM, de Haan A, Lips P, de Jongh RT. Gender-specific associations between physical functioning, bone quality, and fracture risk in older people. Calcif Tissue Int. 2014:1-9.

  40. Scott D, Stuart AL, Kay D, Ebeling PR, Nicholson G, Sanders KM. Investigating the predictive ability of gait speed and quadriceps strength for incident falls in community-dwelling older women at high risk of fracture. Arch Gerontol Geriatr. 2014;58(3):308–13.

    Article  PubMed  Google Scholar 

  41. Cummings SR, Nevitt MC, Browner WS, Stone K, Fox KM, Ensrud KE, et al. Risk factors for hip fracture in white women. N Engl J Med. 1995;332(12):767–73.

    Article  CAS  PubMed  Google Scholar 

  42. Mitchell RJ, Lord SR, Harvey LA, Close JC. Associations between obesity and overweight and fall risk, health status and quality of life in older people. Aust N Z J Public Health. 2014;38(1):13–8.

    Article  PubMed  Google Scholar 

  43. Himes CL, Reynolds SL. Effect of obesity on falls, injury, and disability. J Am Geriatr Soc. 2012;60(1):124–9.

    Article  PubMed  Google Scholar 

  44. Compston JE, Watts NB, Chapurlat R, Cooper C, Boonen S, Greenspan S, et al. Obesity is not protective against fracture in postmenopausal women: GLOW. Am J Med. 2011;124(11):1043–50.

    Article  PubMed  Google Scholar 

  45. Chan MY, Frost SA, Center JR, Eisman JA, Nguyen TV. Relationship between body mass index and fracture risk is mediated by bone mineral density. J Bone Miner Res. 2014.

  46. Johansson H, Kanis JA, Odén A, McCloskey E, Chapurlat RD, Christiansen C, et al. A meta‐analysis of the association of fracture risk and body mass index in women. J Bone Miner Res. 2014;29(1):223–33.

    Article  PubMed  Google Scholar 

  47. Sornay-Rendu E, Boutroy S, Vilayphiou N, Claustrat B, Chapurlat RD. In obese postmenopausal women, bone microarchitecture and strength are not commensurate to greater body weight: the Os des Femmes de Lyon (OFELY) study. J Bone Miner Res. 2013;28(7):1679–87. A matched case-control study which demonstrated that improvements in bone quality are not commensurate with increases in body and fat mass in obese post-menopausal women.

    Article  CAS  PubMed  Google Scholar 

  48. Bredella MA, Lin E, Gerweck AV, Landa MG, Thomas BJ, Torriani M, et al. Determinants of bone microarchitecture and mechanical properties in obese men. J Clin Endocrinol Metab. 2012;97(11):4115–22.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Inacio M, Ryan AS, Bair WN, Prettyman M, Beamer BA, Rogers MW. Gluteal muscle composition differentiates fallers from non-fallers in community dwelling older adults. BMC Geriatr. 2014;14(1):1471–2318. [Research Support, N I H, Extramural Research Support, Non-U S Gov’t].

    Article  Google Scholar 

  50. Schafer AL, Vittinghoff E, Lang TF, Sellmeyer DE, Harris TB, Kanaya AM, et al. Fat infiltration of muscle, diabetes, and clinical fracture risk in older adults. J Clin Endocrinol Metab. 2010;95(11):E368–72.

    Article  PubMed Central  PubMed  Google Scholar 

  51. Sheu Y, Marshall L, Holton K, Caserotti P, Boudreau R, Strotmeyer E, et al. Abdominal body composition measured by quantitative computed tomography and risk of non-spine fractures: the Osteoporotic Fractures in Men (MrOS) study. Osteoporos Int: a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA. 2013.

  52. Lang T, Cauley JA, Tylavsky F, Bauer D, Cummings S, Harris TB. Computed tomographic measurements of thigh muscle cross-sectional area and attenuation coefficient predict hip fracture: the health, aging, and body composition study. J Bone Miner Res. 2010;25(3):513–9. [Research Support, N I H, Extramural Research Support, N I H, Intramural].

    Article  PubMed Central  PubMed  Google Scholar 

  53. Fontana L, Eagon JC, Trujillo ME, Scherer PE, Klein S. Visceral fat adipokine secretion is associated with systemic inflammation in obese humans. Diabetes. 2007;56(4):1010–3.

    Article  CAS  PubMed  Google Scholar 

  54. Baumgartner R. Body composition in healthy aging. Ann N Y Acad Sci. 2000;904(1):437–48.

    Article  CAS  PubMed  Google Scholar 

  55. Rolland Y, Lauwers-Cances V, Cristini C, van Kan GA, Janssen I, Morley JE, et al. Difficulties with physical function associated with obesity, sarcopenia, and sarcopenic-obesity in community-dwelling elderly women: the EPIDOS (EPIDemiologie de l’OSteoporose) Study. Am J Clin Nutr. 2009;89(6):1895–900.

    Article  CAS  PubMed  Google Scholar 

  56. Chang C-I, Huang K-C, Chan D-C, Wu C-H, Lin C-C, Hsiung CA, et al. The impacts of sarcopenia and obesity on physical performance in the elderly. Obes Res Clin Pract. 2014.

  57. Davison KK, Ford ES, Cogswell ME, Dietz WH. Percentage of body fat and body mass index are associated with mobility limitations in people aged 70 and older from NHANES III. J Am Geriatr Soc. 2002;50(11):1802–9.

    Article  PubMed  Google Scholar 

  58. Dufour AB, Hannan MT, Murabito JM, Kiel DP, McLean RR. Sarcopenia definitions considering body size and fat mass are associated with mobility limitations: the Framingham Study. J Gerontol A Biol Sci Med Sci. 2013;68(2):168–74. [Research Support, N I H, Extramural Research Support, Non-U S Gov’t].

    Article  PubMed Central  PubMed  Google Scholar 

  59. Stenholm S, Alley D, Bandinelli S, Griswold M, Koskinen S, Rantanen T, et al. The effect of obesity combined with low muscle strength on decline in mobility in older persons: results from the InCHIANTI Study. Int J Obes. 2009;33(6):635–44.

    Article  CAS  Google Scholar 

  60. Stenholm S, Rantanen T, Heliövaara M, Koskinen S. The mediating role of C‐reactive protein and handgrip strength between obesity and walking limitation. J Am Geriatr Soc. 2008;56(3):462–9.

    Article  PubMed  Google Scholar 

  61. Choquette S, Bouchard D, Doyon C, Sénéchal M, Brochu M, Dionne IJ. Relative strength as a determinant of mobility in elders 67–84 years of age. A nuage study: nutrition as a determinant of successful aging. J Nutr Health Aging. 2010;14(3):190–5.

    Article  CAS  PubMed  Google Scholar 

  62. Yang M, Jiang J, Hao Q, Luo L, Dong B. Dynapenic obesity and lower extremity function in elderly adults. J Am Med Dir Assoc. 2014.

  63. Kim Y-P, Kim S, Joh J-Y, Hwang H-S. Effect of interaction between dynapenic component of the European working group on sarcopenia in older people sarcopenia criteria and obesity on activities of daily living in the elderly. J Am Med Dir Assoc. 2014;15(5):e1–371.e5.

    Article  PubMed  Google Scholar 

  64. Meng NH, Li CI, Liu CS, Lin CH, Lin WY, Chang CK, et al. Comparison of height‐and weight‐adjusted sarcopenia in a Taiwanese metropolitan older population. Geriatr Gerontol Int. 2014.

  65. Aubertin-Leheudre M, Lord C, Labonté M, Khalil A, Dionne IJ. Relationship between sarcopenia and fracture risks in obese postmenopausal women. J Women Aging. 2008;20(3-4):297–308.

    Article  PubMed  Google Scholar 

  66. Fiatarone MA, Marks EC, Ryan ND, Meredith CN, Lipsitz LA, Evans WJ. High-intensity strength training in nonagenarians. Effects on skeletal muscle. J Am Med Assoc. 1990;263(22):3029–34.

    Article  CAS  Google Scholar 

  67. Fiatarone Singh MA. Exercise, nutrition and managing hip fracture in older persons. Curr Opin Clin Nutr Metab Care. 2013.

  68. Gianoudis J, Bailey CA, Ebeling PR, Nowson CA, Sanders KM, Hill K, et al. Effects of a targeted multi-modal exercise program incorporating high speed power training on falls and fracture risk factors in older adults: a community-based randomised controlled trial. J Bone Miner Res. 2013;29(1):182–91.

    Article  Google Scholar 

  69. Ma D, Wu L, He Z. Effects of walking on the preservation of bone mineral density in perimenopausal and postmenopausal women: a systematic review and meta-analysis. Menopause. 2013;20(11):1216–26.

    Article  PubMed  Google Scholar 

  70. Sherrington C, Whitney JC, Lord SR, Herbert RD, Cumming RG, Close JC. Effective exercise for the prevention of falls: a systematic review and meta‐analysis. J Am Geriatr Soc. 2008;56(12):2234–43.

    Article  PubMed  Google Scholar 

  71. Villareal DT, Chode S, Parimi N, Sinacore DR, Hilton T, Armamento-Villareal R, et al. Weight loss, exercise, or both and physical function in obese older adults. N Engl J Med. 2011;364(13):1218–29.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Shea K, Gozansky W, Sherk V, Swibas T, Wolfe P, Scherzinger A, et al. Loss of bone strength in response to exercise-induced weight loss in obese postmenopausal women: results from a pilot study. J Musculoskelet Neuronal Interact. 2014;14(2):229.

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Weinheimer EM, Sands LP, Campbell WW. A systematic review of the separate and combined effects of energy restriction and exercise on fat‐free mass in middle‐aged and older adults: implications for sarcopenic obesity. Nutr Rev. 2010;68(7):375–88.

    Article  PubMed  Google Scholar 

  74. Miller CT, Fraser SF, Levinger I, Straznicky NE, Dixon JB, Reynolds J, et al. The effects of exercise training in addition to energy restriction on functional capacities and body composition in obese adults during weight loss: a systematic review. PLoS ONE. 2013;8(11):e81692. A systematic review of randomized controlled trials comparing caloric restriction to caloric restriction plus exercise intervention for obese middle-aged and older adults, demonstrating more favourable body composition and functional outcomes in caloric restriction plus exercise.

    Article  PubMed Central  PubMed  Google Scholar 

  75. Campbell WW, Haub MD, Wolfe RR, Ferrando AA, Sullivan DH, Apolzan JW, et al. Resistance training preserves fat‐free mass without impacting changes in protein metabolism after weight loss in older women. Obesity. 2009;17(7):1332–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Frimel TN, Sinacore DR, Villareal DT. Exercise attenuates the weight-loss-induced reduction in muscle mass in frail obese older adults. Med Sci Sports Exerc. 2008;40(7):1213–9. [Randomized Controlled Trial].

    Article  PubMed Central  PubMed  Google Scholar 

  77. Manini TM, Buford TW, Lott DJ, Vandenborne K, Daniels MJ, Knaggs JD, et al. Effect of dietary restriction and exercise on lower extremity tissue compartments in obese, older women: a pilot study. J Gerontol A Biol Sci Med Sci. 2014;69(1):101–8. [Comparative Study Randomized Controlled Trial].

    Article  PubMed Central  PubMed  Google Scholar 

  78. Vincent HK, Raiser SN, Vincent KR. The aging musculoskeletal system and obesity-related considerations with exercise. Ageing Res Rev. 2012;11(3):361–73.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Porter Starr KN, McDonald SR, Bales CW. Obesity and physical frailty in older adults: a scoping review of lifestyle intervention trials. J Am Med Dir Assoc. 2014;15(4):240–50.

    Article  PubMed Central  PubMed  Google Scholar 

  80. Balachandran A, Krawczyk SN, Potiaumpai M, Signorile JF. High-speed circuit training vs hypertrophy training to improve physical function in sarcopenic obese adults: a randomized controlled trial. Exp Gerontol. 2014;60:64–71.

    Article  PubMed  Google Scholar 

  81. Sénéchal M, Bouchard DR, Dionne IJ, Brochu M. The effects of lifestyle interventions in dynapenic-obese postmenopausal women. Menopause. 2012;19(9):1015–21.

    Article  PubMed  Google Scholar 

  82. Morley JE, Anker SD, von Haehling S. Prevalence, incidence, and clinical impact of sarcopenia: facts, numbers, and epidemiology—update. J Cachex Sarcopenia Muscle. 2014;2014:1–7.

    Google Scholar 

  83. Houston DK, Nicklas BJ, Ding J, Harris TB, Tylavsky FA, Newman AB, et al. Dietary protein intake is associated with lean mass change in older, community-dwelling adults: the Health, Aging, and Body Composition (Health ABC) Study. Am J Clin Nutr. 2008;87(1):150–5.

    CAS  PubMed  Google Scholar 

  84. Meng X, Zhu K, Devine A, Kerr DA, Binns CW, Prince RL. A 5-year cohort study of the effects of high protein intake on lean mass and bone mineral content in elderly postmenopausal women. J Bone Miner Res. 2009;24(11):1827–34.

    Article  CAS  PubMed  Google Scholar 

  85. Scott D, Blizzard L, Fell J, Giles G, Jones G. Associations between dietary nutrient intake and muscle mass and strength in community-dwelling older adults: the Tasmanian older adult cohort study. J Am Geriatr Soc. 2010;58(11):2129–34.

    Article  PubMed  Google Scholar 

  86. Campbell WW, Trappe TA, Wolfe RR, Evans WJ. The recommended dietary allowance for protein may not be adequate for older people to maintain skeletal muscle. J Gerontol A Biol Sci Med Sci. 2001;56(6):373–80.

    Article  Google Scholar 

  87. Tang JE, Moore DR, Kujbida GW, Tarnopolsky MA, Phillips SM. Ingestion of whey hydrolysate, casein, or soy protein isolate: effects on mixed muscle protein synthesis at rest and following resistance exercise in young men. J Appl Physiol. 2009;107(3):987–92.

    Article  CAS  PubMed  Google Scholar 

  88. Tieland M, van de Rest O, Dirks ML, van der Zwaluw N, Mensink M, van Loon LJC, et al. Protein supplementation improves physical performance in frail elderly people: a randomized, double-blind, placebo-controlled trial. J Am Med Dir Assoc. 2012.

  89. Xu Z-r, Tan Z-j, Zhang Q, Gui Q-f, Yang Y-m. The effectiveness of leucine on muscle protein synthesis, lean body mass and leg lean mass accretion in older people: a systematic review and meta-analysis. Br J Nutr. 2015;113(01):25–34.

    Article  CAS  Google Scholar 

  90. Rizzoli R, Stevenson JC, Bauer JM, van Loon LJC, Walrand S, Kanis JA, et al. The role of dietary protein and vitamin D in maintaining musculoskeletal health in postmenopausal women: a consensus statement from the European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis (ESCEO). Maturitas. (0).

  91. Phillips SM. Nutrient-rich meat proteins in offsetting age-related muscle loss. Meat Sci. 2012.

  92. Daly RM, O’Connell SL, Mundell NL, Grimes CA, Dunstan DW, Nowson CA. Protein-enriched diet, with the use of lean red meat, combined with progressive resistance training enhances lean tissue mass and muscle strength and reduces circulating IL-6 concentrations in elderly women: a cluster randomized controlled trial. Am J Clin Nutr. 2014.ajcn. 064154. A cluster randomized controlled trial which demonstrated that PRT combined with 2 × 80g serves of cooked lean red meat consumed six days per week resulted in greater gains in muscle mass and strength relative to PRT only, and a decrease in fat mass.

  93. Leidy HJ, Carnell NS, Mattes RD, Campbell WW. Higher protein intake preserves lean mass and satiety with weight loss in pre‐obese and obese women. Obesity. 2007;15(2):421–9.

    Article  CAS  PubMed  Google Scholar 

  94. Visser M, Deeg DJH, Lips P. Low vitamin D and high parathyroid hormone levels as determinants of loss of muscle strength and muscle mass (sarcopenia): the longitudinal aging study Amsterdam. J Clin Endocrinol Metab. 2003;88(12):5766–72.

    Article  CAS  PubMed  Google Scholar 

  95. Scott D, Blizzard L, Fell J, Ding C, Winzenberg T, Jones G. A prospective study of the associations between 25-hydroxyvitamin D, sarcopenia progression, and physical activity in older adults. Clin Endocrinol (Oxf). 2010;73(5):581–7.

    Article  CAS  Google Scholar 

  96. Stockton K, Mengersen K, Paratz J, Kandiah D, Bennell K. Effect of vitamin D supplementation on muscle strength: a systematic review and meta-analysis. Osteoporos Int. 2011:1-13.

  97. Dawson-Hughes B, Mithal A, Bonjour JP, Boonen S, Burckhardt P, Fuleihan GEH, et al. IOF position statement: vitamin D recommendations for older adults. Osteoporos Int. 2010:1-4.

  98. Chung J-Y, Kang H-T, Lee D-C, Lee H-R, Lee Y-J. Body composition and its association with cardiometabolic risk factors in the elderly: a focus on sarcopenic obesity. Arch Gerontol Geriatr. 2013;56(1):270–8.

    Article  PubMed  Google Scholar 

  99. Zittermann A, Frisch S, Berthold HK, Gotting C, Kuhn J, Kleesiek K, et al. Vitamin D supplementation enhances the beneficial effects of weight loss on cardiovascular disease risk markers. Am J Clin Nutr. 2009;89(5):1321–7. [Randomized Controlled Trial Research Support, Non-U S Gov’t].

    Article  CAS  PubMed  Google Scholar 

  100. Daly RM, Duckham RL, Gianoudis J. Evidence for an interaction between exercise and nutrition for improving bone and muscle health. Curr Osteoporos Rep. 2014;12(2):219–26.

    Article  PubMed  Google Scholar 

  101. Cermak NM, de Groot LC, Saris WH, van Loon LJ. Protein supplementation augments the adaptive response of skeletal muscle to resistance-type exercise training: a meta-analysis. Am J Clin Nutr. 2012;96(6):1454–64.

    Article  CAS  PubMed  Google Scholar 

  102. Bauer J, Biolo G, Cederholm T, Cesari M, Cruz-Jentoft AJ, Morley JE, et al. Evidence-based recommendations for optimal dietary protein intake in older people: a position paper from the PROT-AGE Study Group. J Am Med Dir Assoc. 2013;14(8):542–59.

    Article  PubMed  Google Scholar 

  103. Deutz NEP, Bauer JM, Barazzoni R, Biolo G, Boirie Y, Bosy-Westphal A, et al. Protein intake and exercise for optimal muscle function with aging: recommendations from the ESPEN Expert Group. Clin Nutr. (0).

  104. Chalé A, Cloutier GJ, Hau C, Phillips EM, Dallal GE, Fielding RA. Efficacy of whey protein supplementation on resistance exercise-induced changes in lean mass, muscle strength, and physical function in mobility-limited older adults. J Gerontol A Biol Sci Med Sci. 2012.

  105. Arnarson A, Geirsdottir OG, Ramel A, Briem K, Jonsson P, Thorsdottir I. Effects of whey proteins and carbohydrates on the efficacy of resistance training in elderly people: double blind, randomised controlled trial. Eur J Clin Nutr. 2013;67(8):821–6.

    Article  CAS  PubMed  Google Scholar 

  106. Scott D, Ebeling PR, Sanders KM, Aitken D, Winzenberg T, Jones G. Vitamin D and physical activity status: associations with five-year changes in body composition and muscle function in community-dwelling older adults. J Clin Endocrinol Metab. 2014.

  107. Ellis AC, Alvarez JA, Gower BA, Hunter GR. Cardiorespiratory fitness in older adult women: relationships with serum 25-hydroxyvitamin D. Endocrine. 2014.

  108. Okuno J, Tomura S, Yabushita N, Kim M-j, Okura T, Tanaka K, et al. Effects of serum 25-hydroxyvitamin D3 levels on physical fitness in community-dwelling frail women. Arch Gerontol Geriatr. 2010;50(2):121–6.

    Article  CAS  PubMed  Google Scholar 

  109. Bunout D, Barrera G, Leiva L, Gattas V, de la Maza MP, Avendaño M, et al. Effects of vitamin D supplementation and exercise training on physical performance in Chilean vitamin D deficient elderly subjects. Exp Gerontol. 2006;41(8):746–52.

    Article  CAS  PubMed  Google Scholar 

  110. Kukuljan S, Nowson CA, Sanders KM, Daly RM. Effects of resistance exercise and fortified milk on skeletal muscle mass, muscle size, and functional performance in middle-aged and older men: an 18-mo randomized controlled trial. J Appl Physiol. 2009;107(6):1864–73.

    Article  CAS  PubMed  Google Scholar 

  111. Mason C, Xiao L, Imayama I, Duggan C, Wang C-Y, Korde L, et al. Vitamin D3 supplementation during weight loss: a double-blind randomized controlled trial. Am J Clin Nutr. 2014;99(5):1015–25.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  112. Verreijen AM, Verlaan S, Engberink MF, Swinkels S, de Vogel-van den Bosch J, Weijs PJ. A high whey protein-, leucine-, and vitamin D-enriched supplement preserves muscle mass during intentional weight loss in obese older adults: a double-blind randomized controlled trial. Am J Clin Nutr. 2015.ajcn. 090290. A randomised controlled trial which demonstrated that 13 weeks of a high whey-protein-, leucine, and vitamin D enriched supplement preserved muscle mass compared with isocaloric controls during intentional weight loss combined with resistance training.

Download references

Compliance with Ethics Guidelines

Conflict of Interest

D. Scott has no conflicts of interest to disclose.

R. M. Daly has received sponsorship from Ostelin and Danone Research, research support from Meat and Livestock Australia, and payment for the development of educational presentations from Abbott Nutrition, Fonterra, Servier, and Merck Sharpe & Dohme.

K.M. Sanders has received research support from Merck Sharpe & Dohme.

P.R. Ebeling has received sponsorship and research support from Merck Sharpe & Dohme.

Human and Animal Rights and Informed Consent

All studies by the authors involving animal and/or human subjects were performed after approval by the appropriate institutional review boards. When required, written informed consent was obtained from all participants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Scott.

Additional information

This article is part of the Topical Collection on Nutrition, Exercise, and Lifestyle in Osteoporosis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scott, D., Daly, R.M., Sanders, K.M. et al. Fall and Fracture Risk in Sarcopenia and Dynapenia With and Without Obesity: the Role of Lifestyle Interventions. Curr Osteoporos Rep 13, 235–244 (2015). https://doi.org/10.1007/s11914-015-0274-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-015-0274-z

Keywords

Navigation