Skip to main content

Advertisement

Log in

Immune Checkpoint Inhibitors for Brain Metastases

  • Neuro-oncology (S Nagpal, Section Editor)
  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Metastasis of cancer to the brain typically portends a poor prognosis and often results in significant morbidity, including from the side effects of treatment. More effective therapies for patients with brain metastases are needed. The current treatment paradigm uses multiple modalities, including surgery, radiation, and in some contexts, systemic chemotherapy and immunotherapy. Immune checkpoint inhibitors are increasingly being used to treat extracranial disease, and their effectiveness in the management of brain metastases needs to be understood.

Recent Findings

The evidence for immune checkpoint inhibitors in the management of brain metastases is largely limited to retrospective analyses of melanoma metastases and ipilimumab. Prospective clinical trials of more active agents are under way, and tentative results suggest activity.

Summary

Immune checkpoint inhibitors have the potential to improve outcomes in patients with brain metastases. Results of current clinical trials will aid in determining the appropriate sequence or combination of local and systemic therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Paper of particular interest, published recently, have been highlighted as: •Of importance •• Of the major importance

  1. Khasraw M, Posner JB. Neurological complications of systemic cancer. Lancet Neurol. 2010;9(12):1214–27.

    Article  PubMed  Google Scholar 

  2. Fox BD, Cheung VJ, Patel AJ, Suki D, Rao G. Epidemiology of metastatic brain tumors. Neurosurg Clin N Am. 2011;22(1):1–6. v doi:10.1016/j.nec.2010.08.007.

    Article  PubMed  Google Scholar 

  3. Arvold ND, Lee EQ, Mehta MP, Margolin K, Alexander BM, Lin NU, et al. Updates in the management of brain metastases. Neuro-Oncology. 2016;18(8):1043–65. doi:10.1093/neuonc/now127.

    Article  PubMed  Google Scholar 

  4. Barnholtz-Sloan JS, Sloan AE, Davis FG, Vigneau FD, Lai P, Sawaya RE. Incidence proportions of brain metastases in patients diagnosed (1973 to 2001) in the Metropolitan Detroit Cancer Surveillance System. J Clin Oncol Off J Am Soc Clin Oncol. 2004;22(14):2865–72. doi:10.1200/jco.2004.12.149.

    Article  Google Scholar 

  5. Agarwala SS, Kirkwood JM, Gore M, Dreno B, Thatcher N, Czarnetski B, et al. Temozolomide for the treatment of brain metastases associated with metastatic melanoma: a phase II study. J Clin Oncol Off J Am Soc Clin Oncol. 2004;22(11):2101–7. doi:10.1200/jco.2004.11.044.

    Article  CAS  Google Scholar 

  6. Ahn MJ, Tsai CM, Yang JCH, Shepherd FA, Satouchi M, Kim DW, et al. 3083 AZD9291 activity in patients with EGFR-mutant advanced non-small cell lung cancer (NSCLC) and brain metastases: data from phase II studies. Eur J Cancer. 2015;51:S625–S6. doi:10.1016/S0959-8049(16)31724-5.

    Article  Google Scholar 

  7. Gadgeel SM, Gandhi L, Riely GJ, Chiappori AA, West HL, Azada MC, et al. Safety and activity of alectinib against systemic disease and brain metastases in patients with crizotinib-resistant ALK-rearranged non-small-cell lung cancer (AF-002JG): results from the dose-finding portion of a phase 1/2 study. Lancet Oncol. 2014;15(10):1119–28. doi:10.1016/s1470-2045(14)70362-6.

    Article  CAS  PubMed  Google Scholar 

  8. Kim DW, Mehra R, Tan DS, Felip E, Chow LQ, Camidge DR, et al. Activity and safety of ceritinib in patients with ALK-rearranged non-small-cell lung cancer (ASCEND-1): updated results from the multicentre, open-label, phase 1 trial. Lancet Oncol. 2016;17(4):452–63. doi:10.1016/s1470-2045(15)00614-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Baik CS, Chamberlain MC, Chow LQ. Targeted therapy for brain metastases in EGFR-mutated and ALK-rearranged non-small-cell lung cancer. J Thoracic Oncol: Off Publ Int Assoc Study Lung Cancer. 2015;10(9):1268–78. doi:10.1097/jto.0000000000000615.

    Article  CAS  Google Scholar 

  10. Long GV, Trefzer U, Davies MA, Kefford RF, Ascierto PA, Chapman PB, et al. Dabrafenib in patients with Val600Glu or Val600Lys BRAF-mutant melanoma metastatic to the brain (BREAK-MB): a multicentre, open-label, phase 2 trial. Lancet Oncol. 2012;13(11):1087–95. doi:10.1016/s1470-2045(12)70431-x.

    Article  CAS  PubMed  Google Scholar 

  11. Dummer R, Goldinger SM, Turtschi CP, Eggmann NB, Michielin O, Mitchell L, et al. Vemurafenib in patients with BRAF(V600) mutation-positive melanoma with symptomatic brain metastases: final results of an open-label pilot study. Eur J Cancer (Oxford, England: 1990). 2014;50(3):611–21. doi:10.1016/j.ejca.2013.11.002.

    Article  CAS  Google Scholar 

  12. Falchook GS, Long GV, Kurzrock R, Kim KB, Arkenau TH, Brown MP, et al. Dabrafenib in patients with melanoma, untreated brain metastases, and other solid tumours: a phase 1 dose-escalation trial. Lancet (London, England). 2012;379(9829):1893–901. doi:10.1016/s0140-6736(12)60398-5.

    Article  CAS  Google Scholar 

  13. Kocher M, Soffietti R, Abacioglu U, Villa S, Fauchon F, Baumert BG, et al. Adjuvant whole-brain radiotherapy versus observation after radiosurgery or surgical resection of one to three cerebral metastases: results of the EORTC 22952-26001 study. J Clin Oncol Off J Am Soc Clin Oncol. 2011;29(2):134–41. doi:10.1200/jco.2010.30.1655.

    Article  Google Scholar 

  14. Brown PD, Asher AL, Ballman KV, Farace E, Cerhan JH, Anderson SK, et al. NCCTG N0574 (Alliance): a phase III randomized trial of whole brain radiation therapy (WBRT) in addition to radiosurgery (SRS) in patients with 1 to 3 brain metastases. ASCO Meet Abs. 2015;33(18_suppl):LBA4.

    Google Scholar 

  15. Shen CJ, Lim M, Kleinberg LR. Controversies in the therapy of brain metastases: shifting paradigms in an era of effective systemic therapy and longer-term survivorship. Curr Treat Options in Oncol. 2016;17(9):46. doi:10.1007/s11864-016-0423-3.

    Article  Google Scholar 

  16. Li J, Bentzen SM, Li J, Renschler M, Mehta MP. Relationship between neurocognitive function and quality of life after whole-brain radiotherapy in patients with brain metastasis. Int J Radiat Oncol Biol Phys. 2008;71(1):64–70. doi:10.1016/j.ijrobp.2007.09.059.

    Article  PubMed  Google Scholar 

  17. Gondi V, Pugh SL, Tome WA, Caine C, Corn B, Kanner A, et al. Preservation of memory with conformal avoidance of the hippocampal neural stem-cell compartment during whole-brain radiotherapy for brain metastases (RTOG 0933): a phase II multi-institutional trial. J Clin Oncol Off J Am Soc Clin Oncol. 2014;32(34):3810–6. doi:10.1200/jco.2014.57.2909.

    Article  Google Scholar 

  18. Lin X, DeAngelis LM. Treatment of brain metastases. J Clin Oncol Off J Am Soc Clin Oncol. 2015;33(30):3475–84. doi:10.1200/jco.2015.60.9503.

    Article  CAS  Google Scholar 

  19. Fidler IJ. The biology of brain metastasis: challenges for therapy. Cancer J (Sudbury, Mass). 2015;21(4):284–93. doi:10.1097/ppo.0000000000000126.

    Article  CAS  Google Scholar 

  20. Lockman PR, Mittapalli RK, Taskar KS, Rudraraju V, Gril B, Bohn KA, et al. Heterogeneous blood-tumor barrier permeability determines drug efficacy in experimental brain metastases of breast cancer. Clin Cancer Res: Off J Am Assoc Cancer Res. 2010;16(23):5664–78. doi:10.1158/1078-0432.ccr-10-1564.

    Article  CAS  Google Scholar 

  21. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12(4):252–64. doi:10.1038/nrc3239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. • Brastianos PK, Carter SL, Santagata S, Cahill DP, Taylor-Weiner A, Jones RT, et al. Genomic characterization of brain metastases reveals branched evolution and potential therapeutic targets. Cancer Dis. 2015;5(11):1164–77. doi:10.1158/2159-8290.cd-15-0369. This paper demonstrated genomic differences in brain metastases compared with other extracranial sites of disease.

    Article  CAS  Google Scholar 

  23. Chen G, Davies MA. Emerging insights into the molecular biology of brain metastases. Biochem Pharmacol. 2012;83(3):305–14. doi:10.1016/j.bcp.2011.09.012.

    Article  CAS  PubMed  Google Scholar 

  24. Hamilton A, Sibson NR. Role of the systemic immune system in brain metastasis. Mol Cell Neurosci. 2013;53:42–51. doi:10.1016/j.mcn.2012.10.004.

    Article  CAS  PubMed  Google Scholar 

  25. Berghoff AS, Preusser M. The inflammatory microenvironment in brain metastases: potential treatment target? Chin Clin Oncol. 2015;4(2):21. doi:10.3978/j.issn.2304-3865.2015.06.03.

    PubMed  Google Scholar 

  26. Patel SP, Kurzrock R. PD-L1 expression as a predictive biomarker in cancer immunotherapy. Mol Cancer Ther. 2015;14(4):847–56. doi:10.1158/1535-7163.mct-14-0983.

    Article  CAS  PubMed  Google Scholar 

  27. Gooden MJ, de Bock GH, Leffers N, Daemen T, Nijman HW. The prognostic influence of tumour-infiltrating lymphocytes in cancer: a systematic review with meta-analysis. Br J Cancer. 2011;105(1):93–103. doi:10.1038/bjc.2011.189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mao Y, Qu Q, Chen X, Huang O, Wu J, Shen K. The prognostic value of tumor-infiltrating lymphocytes in breast cancer: a systematic review and meta-analysis. PLoS One. 2016;11(4):e0152500. doi:10.1371/journal.pone.0152500.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Dong ZY, Wu SP, Liao RQ, Huang SM, Wu YL. Potential biomarker for checkpoint blockade immunotherapy and treatment strategy. Tumour Biol: J Int Soc Oncodev Biol Med. 2016;37(4):4251–61. doi:10.1007/s13277-016-4812-9.

    Article  CAS  Google Scholar 

  30. • Berghoff AS, Fuchs E, Ricken G, Mlecnik B, Bindea G, Spanberger T, et al. Density of tumor-infiltrating lymphocytes correlates with extent of brain edema and overall survival time in patients with brain metastases. Oncoimmunology. 2016a;5(1):e1057388. doi:10.1080/2162402x.2015.1057388. This study illustrated that TILs are likely present in most brain metastases and may predict clinical outcome.

    Article  PubMed  Google Scholar 

  31. Harter PN, Bernatz S, Scholz A, Zeiner PS, Zinke J, Kiyose M, et al. Distribution and prognostic relevance of tumor-infiltrating lymphocytes (TILs) and PD-1/PD-L1 immune checkpoints in human brain metastases. Oncotarget. 2015;6(38):40836–49. doi:10.18632/oncotarget.5696.

    PubMed  PubMed Central  Google Scholar 

  32. •• Margolin K, Ernstoff MS, Hamid O, Lawrence D, McDermott D, Puzanov I, et al. Ipilimumab in patients with melanoma and brain metastases: an open-label, phase 2 trial. Lancet Oncol. 2012;13(5):459–65. doi:10.1016/s1470-2045(12)70090-6. The first prospective clinical trial of immune checkpoint inhibitors specifically in patients with brain metastases suggested modest efficacy.

    Article  CAS  PubMed  Google Scholar 

  33. •• Goldberg SB, Gettinger SN, Mahajan A, Chiang AC, Herbst RS, Sznol M, et al. Pembrolizumab for patients with melanoma or non-small-cell lung cancer and untreated brain metastases: early analysis of a non-randomised, open-label, phase 2 trial. Lancet Oncol. 2016;17(7):976–83. doi:10.1016/s1470-2045(16)30053-5. Another early trial exploring immune checkpoint inhibitors in patients with brain metastases, with some encouraging results from early analysis .

    Article  CAS  PubMed  Google Scholar 

  34. Bienkowski M, Preusser M. Prognostic role of tumour-infiltrating inflammatory cells in brain tumours: literature review. Curr Opin Neurol. 2015;28(6):647–58. doi:10.1097/wco.0000000000000251.

    Article  CAS  PubMed  Google Scholar 

  35. Koelzer VH, Rothschild SI, Zihler D, Wicki A, Willi B, Willi N, et al. Systemic inflammation in a melanoma patient treated with immune checkpoint inhibitors—an autopsy study. J Immunotherapy Cancer. 2016;4:13. doi:10.1186/s40425-016-0117-1.

    Article  Google Scholar 

  36. Berghoff AS, Ricken G, Widhalm G, Rajky O, Dieckmann K, Birner P, et al. Tumour-infiltrating lymphocytes and expression of programmed death ligand 1 (PD-L1) in melanoma brain metastases. Histopathology. 2015;66(2):289–99. doi:10.1111/his.12537.

    Article  PubMed  Google Scholar 

  37. Berghoff AS, Ricken G, Wilhelm D, Rajky O, Widhalm G, Dieckmann K, et al. Tumor infiltrating lymphocytes and PD-L1 expression in brain metastases of small cell lung cancer (SCLC). J Neuro-Oncol. 2016b; doi:10.1007/s11060-016-2216-8.

    PubMed  Google Scholar 

  38. Snyder A, Makarov V, Merghoub T, Yuan J, Zaretsky JM, Desrichard A, et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med. 2014;371(23):2189–99. doi:10.1056/NEJMoa1406498.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Korabiowska M, Konig F, Verheggen R, Schlott T, Cordon-Cardo C, Romeike B, et al. Altered expression and new mutations in DNA mismatch repair genes MLH1 and MSH2 in melanoma brain metastases. Anticancer Res. 2004;24(2b):981–6.

    CAS  PubMed  Google Scholar 

  40. Kafka A, Tomas D, Beros V, Pecina HI, Zeljko M, Pecina-Slaus N. Brain metastases from lung cancer show increased expression of DVL1, DVL3 and beta-catenin and down-regulation of E-cadherin. Int J Mol Sci. 2014;15(6):10635–51. doi:10.3390/ijms150610635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Feilchenfeldt J, Varga Z, Siano M, Grabsch HI, Held U, Schuknecht B, et al. Brain metastases in gastro-oesophageal adenocarcinoma: insights into the role of the human epidermal growth factor receptor 2 (HER2). Br J Cancer. 2015;113(5):716–21. doi:10.1038/bjc.2015.279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tran B, Kopetz S, Tie J, Gibbs P, Jiang ZQ, Lieu CH, et al. Impact of BRAF mutation and microsatellite instability on the pattern of metastatic spread and prognosis in metastatic colorectal cancer. Cancer. 2011;117(20):4623–32. doi:10.1002/cncr.26086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 2015;372(26):2509–20. doi:10.1056/NEJMoa1500596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hodi FS, Oble DA, Drappatz J, Velazquez EF, Ramaiya N, Ramakrishna N, et al. CTLA-4 blockade with ipilimumab induces significant clinical benefit in a female with melanoma metastases to the CNS. Nat Clin Pract Oncol. 2008;5(9):557–61. doi:10.1038/ncponc1183.

    Article  CAS  PubMed  Google Scholar 

  45. Schartz NE, Farges C, Madelaine I, Bruzzoni H, Calvo F, Hoos A, et al. Complete regression of a previously untreated melanoma brain metastasis with ipilimumab. Melanoma Res. 2010;20(3):247–50. doi:10.1097/CMR.0b013e3283364a37.

    PubMed  Google Scholar 

  46. Gibney GT, Atkins MB. Swinging for the fences: long-term survival with ipilimumab in metastatic melanoma. J Clin Oncol Off J Am Soc Clin Oncol. 2015;33(17):1873–7. doi:10.1200/jco.2014.60.1807.

    Article  Google Scholar 

  47. Azer MW, Menzies AM, Haydu LE, Kefford RF, Long GV. Patterns of response and progression in patients with BRAF-mutant melanoma metastatic to the brain who were treated with dabrafenib. Cancer. 2014;120(4):530–6. doi:10.1002/cncr.28445.

    Article  CAS  PubMed  Google Scholar 

  48. Hodi FS, O'Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363(8):711–23. doi:10.1056/NEJMoa1003466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zimmer L, Eigentler TK, Kiecker F, Simon J, Utikal J, Mohr P, et al. Open-label, multicenter, single-arm phase II DeCOG-study of ipilimumab in pretreated patients with different subtypes of metastatic melanoma. J Transl Med. 2015;13:351. doi:10.1186/s12967-015-0716-5.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Chasset F, Pages C, Biard L, Roux J, Sidina I, Madelaine I, et al. Single-center study under a French Temporary Authorization for Use (TAU) protocol for ipilimumab in metastatic melanoma: negative impact of baseline corticosteroids. Eur J Dermatol: EJD. 2015;25(1):36–44. doi:10.1684/ejd.2014.2471.

    CAS  PubMed  Google Scholar 

  51. Dagogo-Jack I, Giobbie-Hurder A, Gainor JF, Lawrence DP, Shaw AT, Sullivan RJ. Retrospective analysis of activity of pembrolizumab (pembro) in melanoma patients (pts) with brain metastasis (BM). ASCO Meet Abs. 2016;34(15_suppl):2071.

    Google Scholar 

  52. Luttmann N, Gratz V, Haase O, Eckey T, Langan EA, Zillikens D et al. 2016. Rapid remission of symptomatic brain metastases in melanoma by programmed-death-receptor-1 inhibition. Melanoma Research. doi:10.1097/cmr.0000000000000270

  53. Kirchberger MC, Hauschild A, Schuler G, Heinzerling L. Combined low-dose ipilimumab and pembrolizumab after sequential ipilimumab and pembrolizumab failure in advanced melanoma. Eur J Cancer (Oxford, England: 1990). 2016;65:182–4. doi:10.1016/j.ejca.2016.07.003.

    Article  CAS  Google Scholar 

  54. Goldman JW, Crino L, Vokes EE, Holgado E, Reckamp KL, Pluzanski A, et al. Nivolumab (nivo) in patients (pts) with advanced (adv) NSCLC and central nervous system (CNS) metastases (mets). ASCO Meet Abs. 2016;34(15_suppl):9038.

    Google Scholar 

  55. Kanai O, Fujita K, Okamura M, Nakatani K, Mio T. Severe exacerbation or manifestation of primary disease related to nivolumab in non-small-cell lung cancer patients with poor performance status or brain metastases. Ann Oncol: Off J Eur Soc Med Oncol/ESMO. 2016;27(7):1354–6. doi:10.1093/annonc/mdw148.

    Article  CAS  Google Scholar 

  56. Long GV, Atkinson V, Menzies AM, Guminski AD, Sandhu SK, Brown MP, et al. A randomized phase 2 study of nivolumab and nivolumab combined with ipilimumab in patients (pts) with melanoma brain metastases: the anti-PD1 brain collaboration (ABC study). ASCO Meet Abs. 2016;34(15_suppl):TPS9591.

    Google Scholar 

  57. Goyal S, Silk AW, Tian S, Mehnert J, Danish S, Ranjan S, et al. Clinical management of multiple melanoma brain metastases: a systematic review. JAMA Oncol. 2015;1(5):668–76. doi:10.1001/jamaoncol.2015.1206.

    Article  PubMed  Google Scholar 

  58. Silk AW, Bassetti MF, West BT, Tsien CI, Lao CD. Ipilimumab and radiation therapy for melanoma brain metastases. Cancer Med. 2013;2(6):899–906. doi:10.1002/cam4.140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Knisely JP, Yu JB, Flanigan J, Sznol M, Kluger HM, Chiang VL. Radiosurgery for melanoma brain metastases in the ipilimumab era and the possibility of longer survival. J Neurosurg. 2012;117(2):227–33. doi:10.3171/2012.5.jns111929.

    Article  PubMed  Google Scholar 

  60. Tazi K, Hathaway A, Chiuzan C, Shirai K. Survival of melanoma patients with brain metastases treated with ipilimumab and stereotactic radiosurgery. Cancer Med. 2015;4(1):1–6. doi:10.1002/cam4.315.

    Article  CAS  PubMed  Google Scholar 

  61. Fang P, JIang W, Kim BY, Glitza IC, Mahajan A, Davies MA et al. 2016 Stereotactic radiosurgery in the setting of immune checkpoint blockade results in improved intracranial control compared with whole-brain irradiation for greater than three melanoma brain metastases. Oncology (Williston Park, NY) 30 Suppl

  62. Postow MA, Callahan MK, Barker CA, Yamada Y, Yuan J, Kitano S, et al. Immunologic correlates of the abscopal effect in a patient with melanoma. N Engl J Med. 2012;366(10):925–31. doi:10.1056/NEJMoa1112824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kiess AP, Wolchok JD, Barker CA, Postow MA, Tabar V, Huse JT, et al. Stereotactic radiosurgery for melanoma brain metastases in patients receiving ipilimumab: safety profile and efficacy of combined treatment. Int J Radiat Oncol Biol Phys. 2015;92(2):368–75. doi:10.1016/j.ijrobp.2015.01.004.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Qian JM, Yu JB, Kluger HM, Chiang VL 2016. Timing and type of immune checkpoint therapy affect the early radiographic response of melanoma brain metastases to stereotactic radiosurgery. Cancer. doi:10.1002/cncr.30138

  65. Feldmann G, Brossart P, Zipfel M, von Lilienfeld-Toal M. Mixed response to ipilimumab in a melanoma patient with brain metastases: case report and review of the literature. Case Rep Oncol. 2013;6(1):229–35. doi:10.1159/000351125.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Ahmed KA, Stallworth DG, Kim Y, Johnstone PA, Harrison LB, Caudell JJ, et al. Clinical outcomes of melanoma brain metastases treated with stereotactic radiation and anti-PD-1 therapy. Ann Oncol: Off J Eur Soc Med Oncol/ESMO. 2016;27(3):434–41. doi:10.1093/annonc/mdv622.

    Article  CAS  Google Scholar 

  67. Schoenfeld JD, Mahadevan A, Floyd SR, Dyer MA, Catalano PJ, Alexander BM, et al. Ipilimumab and cranial radiation in metastatic melanoma patients: a case series and review. J Immun Cancer. 2015;3:50. doi:10.1186/s40425-015-0095-8.

    Article  Google Scholar 

  68. Grimaldi AM, Simeone E, Giannarelli D, Muto P, Falivene S, Borzillo V, et al. Abscopal effects of radiotherapy on advanced melanoma patients who progressed after ipilimumab immunotherapy. Oncoimmunology. 2014;3:e28780. doi:10.4161/onci.28780.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Liniker E, Menzies AM, Kong BY, Cooper A, Ramanujam S, Lo S, et al. Activity and safety of radiotherapy with anti-PD-1 drug therapy in patients with metastatic melanoma. Oncoimmunology. 2016;5(9):e1214788. doi:10.1080/2162402X.2016.1214788.

    Article  CAS  PubMed  Google Scholar 

  70. Gerber NK, Young RJ, Barker CA, Wolchok JD, Chan TA, Yamada Y, et al. Ipilimumab and whole brain radiation therapy for melanoma brain metastases. J Neuro-Oncol. 2015;121(1):159–65. doi:10.1007/s11060-014-1617-9.

    Article  CAS  Google Scholar 

  71. Du Four S, Wilgenhof S, Duerinck J, Michotte A, Van Binst A, De Ridder M, et al. Radiation necrosis of the brain in melanoma patients successfully treated with ipilimumab, three case studies. Eur J Cancer (Oxford, England: 1990). 2012;48(16):3045–51. doi:10.1016/j.ejca.2012.05.016.

    Article  CAS  Google Scholar 

  72. Colaco RJ, Martin P, Kluger HM, Yu JB, Chiang VL. Does immunotherapy increase the rate of radiation necrosis after radiosurgical treatment of brain metastases? J Neurosurg. 2016;125(1):17–23. doi:10.3171/2015.6.jns142763.

    Article  PubMed  Google Scholar 

  73. Alomari AK, Cohen J, Vortmeyer AO, Chiang A, Gettinger S, Goldberg S, et al. Possible interaction of anti-PD-1 therapy with the effects of radiosurgery on brain metastases. Cancer Immun Res. 2016;4(6):481–7. doi:10.1158/2326-6066.cir-15-0238.

    Article  CAS  Google Scholar 

  74. Patel KR, Lawson DH, Kudchadkar RR, Carthon BC, Oliver DE, Okwan-Duodu D, et al. Two heads better than one? Ipilimumab immunotherapy and radiation therapy for melanoma brain metastases. Neuro-Oncology. 2015;17(10):1312–21. doi:10.1093/neuonc/nov093.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Mathew M, Tam M, Ott PA, Pavlick AC, Rush SC, Donahue BR, et al. Ipilimumab in melanoma with limited brain metastases treated with stereotactic radiosurgery. Melanoma Res. 2013;23(3):191–5. doi:10.1097/CMR.0b013e32835f3d90.

    Article  CAS  PubMed  Google Scholar 

  76. Silk AW, Cao Y, Gomez-Hassan D, Redman BG, Hayman J, Heth J, et al. A randomized phase II study of ipilimumab induction in patients with melanoma brain metastases receiving stereotactic radiosurgery. ASCO Meet Abs. 2015;33(15_suppl):TPS9079.

    Google Scholar 

  77. Jones PS, Cahill DP, Brastianos PK, Flaherty KT, Curry WT. Ipilimumab and craniotomy in patients with melanoma and brain metastases: a case series. Neurosurg Focus. 2015;38(3):E5. doi:10.3171/2014.12.focus14698.

    Article  PubMed  Google Scholar 

  78. Owonikoko TK, Arbiser J, Zelnak A, Shu HK, Shim H, Robin AM, et al. Current approaches to the treatment of metastatic brain tumours. Nat Rev Clin Oncol. 2014;11(4):203–22. doi:10.1038/nrclinonc.2014.25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wilmott JS, Long GV, Howle JR, Haydu LE, Sharma RN, Thompson JF, et al. Selective BRAF inhibitors induce marked T-cell infiltration into human metastatic melanoma. Clin Cancer Res: Off J Am Assoc Cancer Res. 2012;18(5):1386–94. doi:10.1158/1078-0432.ccr-11-2479.

    Article  CAS  Google Scholar 

  80. Frederick DT, Piris A, Cogdill AP, Cooper ZA, Lezcano C, Ferrone CR, et al. BRAF inhibition is associated with enhanced melanoma antigen expression and a more favorable tumor microenvironment in patients with metastatic melanoma. Clin Cancer Res: Off J Am Assoc Cancer Res. 2013;19(5):1225–31. doi:10.1158/1078-0432.ccr-12-1630.

    Article  CAS  Google Scholar 

  81. Boussiotis VA. Molecular and biochemical aspects of the PD-1 checkpoint pathway. N Engl J Med. 2016;375(18):1767–78. doi:10.1056/NEJMra1514296.

    Article  CAS  PubMed  Google Scholar 

  82. Garrido G, Rabasa A, Garrido C, Lopez A, Chao L, Garcia-Lora AM, et al. Preclinical modeling of EGFR-specific antibody resistance: oncogenic and immune-associated escape mechanisms. Oncogene. 2014;33(24):3129–39. doi:10.1038/onc.2013.288.

    Article  CAS  PubMed  Google Scholar 

  83. Naidoo J, Page DB, Li BT, Connell LC, Schindler K, Lacouture ME, et al. Toxicities of the anti-PD-1 and anti-PD-L1 immune checkpoint antibodies. Ann Oncol: Off J Eur Soc Med Oncol/ESMO. 2015;26(12):2375–91. doi:10.1093/annonc/mdv383.

    CAS  Google Scholar 

  84. Di Giacomo AM, Ascierto PA, Queirolo P, Pilla L, Ridolfi R, Santinami M, et al. Three-year follow-up of advanced melanoma patients who received ipilimumab plus fotemustine in the Italian Network for Tumor Biotherapy (NIBIT)-M1 phase II study. Ann Oncol: Off J Eur Soc Med Oncol/ESMO. 2015;26(4):798–803. doi:10.1093/annonc/mdu577.

    Article  CAS  Google Scholar 

  85. Margolin KA, Tawbi HA-H, Ernstoff MS, Hodi FS, McDermott DF, Edwards R, et al. A multi-center phase II open-label study (CheckMate 204) to evaluate safety and efficacy of nivolumab (NIVO) in combination with ipilimumab (IPI) followed by NIVO monotherapy in patients (pts) with melanoma (MEL) metastatic to the brain. ASCO Meet Abs. 2015;33(15_suppl):TPS9080.

    Google Scholar 

  86. Postow MA, Chesney J, Pavlick AC, Robert C, Grossmann K, McDermott D, et al. Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. N Engl J Med. 2015;372(21):2006–17. doi:10.1056/NEJMoa1414428.

    Article  PubMed  Google Scholar 

  87. Tsimberidou AM, Letourneau K, Wen S, Wheler J, Hong D, Naing A, et al. Phase I clinical trial outcomes in 93 patients with brain metastases: the MD Anderson Cancer Center experience. Clin Cancer Res: Off J Am Assoc Cancer Res. 2011;17(12):4110–8. doi:10.1158/1078-0432.ccr-10-3095.

    Article  CAS  Google Scholar 

  88. Berghoff AS, Venur VA, Preusser M, Ahluwalia MS. Immune checkpoint inhibitors in brain metastases: from biology to treatment. Am Soc Clin Oncol Edu Book/ASCO Am Soc Clin Oncol Meet. 2016c;35:e116–22. doi:10.14694/edbk_100005.

    Google Scholar 

  89. Dhermain F, Deutsch E. Stereotactic radiation and checkpoint inhibitors in melanoma patients with BM: a question of drug, timing or both? Ann Oncol: Off J Eur Soc Med Oncol/ESMO. 2016;27(3):371–2. doi:10.1093/annonc/mdw001.

    Article  CAS  Google Scholar 

  90. Franceschini D, Franzese C, Navarria P, Ascolese AM, De Rose F, Del Vecchio M, et al. Radiotherapy and immunotherapy: can this combination change the prognosis of patients with melanoma brain metastases? Cancer Treat Rev. 2016;50:1–8. doi:10.1016/j.ctrv.2016.08.003.

    Article  CAS  PubMed  Google Scholar 

  91. Okada H, Weller M, Huang R, Finocchiaro G, Gilbert MR, Wick W, et al. Immunotherapy response assessment in neuro-oncology: a report of the RANO working group. Lancet Oncol. 2015;16(15):e534–42. doi:10.1016/s1470-2045(15)00088-1.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Lin NU, Lee EQ, Aoyama H, Barani IJ, Barboriak DP, Baumert BG, et al. Response assessment criteria for brain metastases: proposal from the RANO group. Lancet Oncol. 2015;16(6):e270–8. doi:10.1016/s1470-2045(15)70057-4.

    Article  PubMed  Google Scholar 

  93. Eisele SC, Wen PY, Lee EQ. Assessment of brain tumor response: RANO and its offspring. Curr Treat Options in Oncol. 2016;17(7):35. doi:10.1007/s11864-016-0413-5.

    Article  Google Scholar 

  94. • Spagnolo F, Picasso V, Lambertini M, Ottaviano V, Dozin B, Queirolo P. Survival of patients with metastatic melanoma and brain metastases in the era of MAP-kinase inhibitors and immunologic checkpoint blockade antibodies: a systematic review. Cancer Treat Rev. 2016;45:38–45. doi:10.1016/j.ctrv.2016.03.003. A systematic review of the published evidence to date of immune checkpoint inhibitors in the management of melanoma brain metastases.

    Article  CAS  PubMed  Google Scholar 

  95. Di Giacomo AM, Ascierto PA, Pilla L, Santinami M, Ferrucci PF, Giannarelli D, et al. Ipilimumab and fotemustine in patients with advanced melanoma (NIBIT-M1): an open-label, single-arm phase 2 trial. Lancet Oncol. 2012;13(9):879–86. doi:10.1016/s1470-2045(12)70324-8.

    Article  CAS  PubMed  Google Scholar 

  96. Weber JS, Amin A, Minor D, Siegel J, Berman D, O’Day SJ. Safety and clinical activity of ipilimumab in melanoma patients with brain metastases: retrospective analysis of data from a phase 2 trial. Melanoma Res. 2011;21(6):530–4. doi:10.1097/CMR.0b013e32834d3d88.

    Article  CAS  PubMed  Google Scholar 

  97. Konstantinou MP, Dutriaux C, Gaudy-Marqueste C, Mortier L, Bedane C, Girard C, et al. Ipilimumab in melanoma patients with brain metastasis: a retro-spective multicentre evaluation of thirty-eight patients. Acta Derm Venereol. 2014;94(1):45–9. doi:10.2340/00015555-1654.

    Article  PubMed  Google Scholar 

  98. Ahmad SS, Qian W, Ellis S, Mason E, Khattak MA, Gupta A, et al. Ipilimumab in the real world: the UK expanded access programme experience in previously treated advanced melanoma patients. Melanoma Res. 2015;25(5):432–42. doi:10.1097/cmr.0000000000000185.

    Article  CAS  PubMed  Google Scholar 

  99. Queirolo P, Spagnolo F, Ascierto PA, Simeone E, Marchetti P, Scoppola A, et al. Efficacy and safety of ipilimumab in patients with advanced melanoma and brain metastases. J Neuro-Oncol. 2014;118(1):109–16. doi:10.1007/s11060-014-1400-y.

    CAS  Google Scholar 

  100. Alexander M, Mellor JD, McArthur G, Kee D. Ipilimumab in pretreated patients with unresectable or metastatic cutaneous, uveal and mucosal melanoma. Med J Aust. 2014;201(1):49–53.

    Article  PubMed  Google Scholar 

  101. Patt DA, Rembert D, Bhor M, Bhowmik D, Rao SA. A real-world observational study of patients with advanced melanoma receiving first-line ipilimumab in a community practice setting. J Cancer Ther. 2014;5:1049–58. doi:10.4236/jct.2014.512110.

    Article  CAS  Google Scholar 

  102. Hassel JC, Lee SB, Meiss F, Meier F, Dimitrakopoulou-Strauss A, Jager D, et al. Vemurafenib and ipilimumab: a promising combination? Results of a case series. Oncoimmunology. 2016;5(4):e1101207. doi:10.1080/2162402x.2015.1101207.

    Article  PubMed  Google Scholar 

  103. Dudnik E, Yust-Katz S, Nechushtan H, Goldstein DA, Zer A, Flex D, et al. Intracranial response to nivolumab in NSCLC patients with untreated or progressing CNS metastases. Lung Cancer (Amsterdam, Netherlands). 2016;98:114–7. doi:10.1016/j.lungcan.2016.05.031.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Khasraw.

Ethics declarations

Conflict of Interest

Aaron C. Tan declares that he has no conflict of interest.

Amy B. Heimberger has received clinical trial funding from Merck Sharp and Dohme (MSD) and owns stock and serves on the advisory board of Caris Life Sciences.

Alexander M. Menzies has received honoraria from Bristol-Myers Squibb and Novartis, and serves on advisory boards for MSD and Chugai.

Nick Pavlakis has received honoraria from Specialized Therapeutics, Bayer, Boehringer Ingelheim, Roche, Merck-Serono, AstraZeneca, Amgen, Novartis, and Pfizer, and has served on advisory boards for Specialized Therapeutics, Pfizer, Novartis, Amgen, Bayer, Boehringer Ingelheim, Roche, and Sanofi-Aventis.

Mustafa Khasraw has received research funding from AbbVie and Specialised Therapeutics Australia (STA), and serves on the advisory board of AbbVie, STA, and Eli Lilly.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Neuro-oncology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, A.C., Heimberger, A.B., Menzies, A.M. et al. Immune Checkpoint Inhibitors for Brain Metastases. Curr Oncol Rep 19, 38 (2017). https://doi.org/10.1007/s11912-017-0596-3

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11912-017-0596-3

Keywords

Navigation