Skip to main content

Advertisement

Log in

Novel Approaches to Treatment of Leiomyosarcomas

  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Soft tissue sarcomas are rare tumors and include subtypes with variable clinical, pathological, and genetic characteristics, including leiomyosarcoma. Current chemotherapy options include the use of doxorubicin, ifosfamide, gemcitabine and docetaxel, and trabectedin, but these have poor response rates in the metastatic setting. While some targeted therapies with tyrosine kinase inhibitors have shown promise, there is a clear need for novel, targeted strategies for this enigmatic form of soft-tissue sarcoma. The genomic instability and multiple, complex karyotypic abnormalities of leiomyosarcomas is a potential for therapy with agents with proven activity in other cancers with genomic instability, such as BRCA-related breast or ovarian cancer. There are few pathways affected in leiomyosarcoma that suggest obvious opportunities, but poly ADP-ribose polymerase (PARP) inhibitors hold promise. This article outlines current therapeutic options available and undergoing study, as well as explores the rationale for the study of PARP inhibitors in leiomyosarcomas, with or without chemotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Fletcher C, Unni K, Mertens F, editors. World Health Organization classification of tumours. Pathology and genetics of tumours of soft tissue and bone. Lyon: IARC Press; 2002.

    Google Scholar 

  2. Toro JR, Travis LB, Wu HJ, et al. Incidence patterns of soft tissue sarcomas, regardless of primary site, in the surveillance, epidemiology and end results program, 1978–2001: an analysis of 26,758 cases. Int J Cancer. 2006;119(12):2922–30.

    Article  PubMed  CAS  Google Scholar 

  3. •• Fletcher CDM, Gustafson P, Rydholm A, et al. Clinicopathologic Re-Evaluation of 100 Malignant Fibrous Histiocytomas: Prognostic Relevance of Subclassification. J Clin Oncol. 2001;19(12):3045–50. This important paper suggests that tumors of myogenic origin have a worse outcome than MFH of nonmyogenic origin; and that 20% of MFH may comprise LMS.

    PubMed  CAS  Google Scholar 

  4. Reed NS, Mangioni C, Malmstrom H, et al. Phase III randomised study to evaluate the role of adjuvant pelvic radiotherapy in the treatment of uterine sarcomas stages I and II: an European Organisation for Research and Treatment of Cancer Gynaecological Cancer Group Study (protocol 55874). Eur J Cancer. 2008;44(6):808–18.

    Article  PubMed  CAS  Google Scholar 

  5. Evans H, Shipley J. Leimyosarcoma. In: Fletcher C, Unni K, Mertens F, editors. World Health Organization Classification of Tumors Pathology and genetics of tumors of soft tissue and bone. Lyon: IARC Press; 2002. p. 131–4.

    Google Scholar 

  6. Dei Tos AP. The reappraisal of gastrointestinal stromal tumors: from Stout to the KIT revolution. Virchows Arch. 2003;442(5):421–8.

    PubMed  Google Scholar 

  7. Coindre JM, Terrier P, Guillou L, et al. Predictive value of grade for metastasis development in the main histologic types of adult soft tissue sarcomas: a study of 1240 patients from the French Federation of Cancer Centers Sarcoma Group. Cancer. 2001;91(10):1914–26.

    Article  PubMed  CAS  Google Scholar 

  8. Collaboration SMAC: Sarcoma Meta-Analysis Consortium. Adjuvant chemotherapy for localised resectable soft-tissue sarcoma of adults: meta-analysis of individual data. The Lancet. 1997;350(9092):1647–54.

    Article  Google Scholar 

  9. Oosten AW, Seynaeve C, Schmitz PI, et al. Outcomes of first-line chemotherapy in patients with advanced or metastatic leiomyosarcoma of uterine and non-uterine origin. Sarcoma. 2009;2009:348910.

    Article  PubMed  CAS  Google Scholar 

  10. Van Glabbeke M, van Oosterom AT, Oosterhuis JW, et al. Prognostic Factors for the Outcome of Chemotherapy in Advanced Soft Tissue Sarcoma: An Analysis of 2,185 Patients Treated With Anthracycline-Containing First-Line Regimens—A European Organization for Research and Treatment of Cancer Soft Tissue and Bone Sarcoma Group Study. J Clin Oncol. 1999;17(1):150.

    PubMed  Google Scholar 

  11. Karavasilis V, Seddon BM, Ashley S, et al. Significant clinical benefit of first-line palliative chemotherapy in advanced soft-tissue sarcoma: retrospective analysis and identification of prognostic factors in 488 patients. Cancer. 2008;112(7):1585–91.

    Article  PubMed  Google Scholar 

  12. Edmonson J, Ryan L, Blum R, et al. Randomized comparison of doxorubicin alone versus ifosfamide plus doxorubicin or mitomycin, doxorubicin, and cisplatin against advanced soft tissue sarcomas. J Clin Oncol. 1993;11(7):1269–75.

    PubMed  CAS  Google Scholar 

  13. Cantwell BM, Carmichael J, Ghani S, et al. A phase II study of ifosfamide/mesna with doxorubicin for adult soft tissue sarcoma. Cancer Chemother Pharmacol. 1988;21(1):49–52.

    Article  PubMed  CAS  Google Scholar 

  14. Loehrer Sr PJ, Sledge Jr GW, Nicaise C, et al. Ifosfamide plus doxorubicin in metastatic adult sarcomas: a multi-institutional phase II trial. J Clin Oncol. 1989;7(11):1655–9.

    PubMed  Google Scholar 

  15. Mansi JL, Fisher C, Wiltshaw E, et al. A phase I-II study of ifosfamide in combination with adriamycin in the treatment of adult soft tissue sarcoma. Eur J Cancer Clin Oncol. 1988;24(9):1439–43.

    Article  PubMed  CAS  Google Scholar 

  16. Schutte J, Mouridsen HT, Stewart W, et al. Ifosfamide plus doxorubicin in previously untreated patients with advanced soft tissue sarcoma. The EORTC Soft Tissue and Bone Sarcoma Group. Eur J Cancer. 1990;26(5):558–61.

    Article  PubMed  CAS  Google Scholar 

  17. Sleijfer S, Ouali M, van Glabbeke M, et al. Prognostic and predictive factors for outcome to first-line ifosfamide-containing chemotherapy for adult patients with advanced soft tissue sarcomas: an exploratory, retrospective analysis on large series from the European Organization for Research and Treatment of Cancer-Soft Tissue and Bone Sarcoma Group (EORTC-STBSG). Eur J Cancer. 2010;46(1):72–83.

    Article  PubMed  CAS  Google Scholar 

  18. • Hensley ML, Maki R, Venkatraman E, et al. Gemcitabine and docetaxel in patients with unresectable leiomyosarcoma: results of a phase II trial. J Clin Oncol. 2002;20(12):2824–31. This paper provides evidence of clinical activity of a novel combination chemotherapy in LMS.

    Article  PubMed  CAS  Google Scholar 

  19. Hensley ML. Update on gemcitabine and docetaxel combination therapy for primary and metastatic sarcomas. Curr Opin Oncol. 2010;22(4):356–61.

    Article  PubMed  CAS  Google Scholar 

  20. Leu KM, Ostruszka LJ, Shewach D, et al. Laboratory and clinical evidence of synergistic cytotoxicity of sequential treatment with gemcitabine followed by docetaxel in the treatment of sarcoma. J Clin Oncol. 2004;22(9):1706–12.

    Article  PubMed  CAS  Google Scholar 

  21. Bay JO, Ray-Coquard I, Fayette J, et al. Docetaxel and gemcitabine combination in 133 advanced soft-tissue sarcomas: a retrospective analysis. Int J Cancer. 2006;119(3):706–11.

    Article  PubMed  CAS  Google Scholar 

  22. • Maki RG, Wathen JK, Patel SR, et al. Randomized Phase II Study of Gemcitabine and Docetaxel Compared With Gemcitabine Alone in Patients With Metastatic Soft Tissue Sarcomas: Results of Sarcoma Alliance for Research Through Collaboration Study 002. Journal of Clinical Oncology. 2007;25(19):2755–63. This paper supports the findings of the Hensley paper above [19].

    Article  PubMed  CAS  Google Scholar 

  23. Patel SR, Gandhi V, Jenkins J, et al. Phase II clinical investigation of gemcitabine in advanced soft tissue sarcomas and window evaluation of dose rate on gemcitabine triphosphate accumulation. J Clin Oncol. 2001;19(15):3483–9.

    PubMed  CAS  Google Scholar 

  24. Zewail-Foote M, Hurley LH. Ecteinascidin 743: a minor groove alkylator that bends DNA toward the major groove. J Med Chem. 1999;42(14):2493–7.

    Article  PubMed  CAS  Google Scholar 

  25. Erba E, Bergamaschi D, Bassano L, et al. Ecteinascidin-743 (ET-743), a natural marine compound, with a unique mechanism of action. Eur J Cancer. 2001;37(1):97–105.

    Article  PubMed  CAS  Google Scholar 

  26. Garcia-Carbonero R, Supko JG, Manola J, et al. Phase II and pharmacokinetic study of ecteinascidin 743 in patients with progressive sarcomas of soft tissues refractory to chemotherapy. J Clin Oncol. 2004;22(8):1480–90.

    Article  PubMed  CAS  Google Scholar 

  27. • Le Cesne A, Blay JY, Judson I, et al. Phase II study of ET-743 in advanced soft tissue sarcomas: a European Organisation for the Research and Treatment of Cancer (EORTC) soft tissue and bone sarcoma group trial. J Clin Oncol. 2005;23(3):576–84. This paper provides evidence that a novel cytotoxic (ecteinascidin) has activity in LMS.

    Article  PubMed  Google Scholar 

  28. • Demetri GD, Chawla SP, von Mehren M, et al. Efficacy and safety of trabectedin in patients with advanced or metastatic liposarcoma or leiomyosarcoma after failure of prior anthracyclines and ifosfamide: results of a randomized phase II study of two different schedules. J Clin Oncol. 2009;27(25):4188–96. This paper supports the findings of Le Cesne et al. [27•].

    Article  PubMed  CAS  Google Scholar 

  29. Blay J-Y, von Mehren M, Samuels BL, et al. Phase I Combination Study of Trabectedin and Doxorubicin in Patients with Soft-Tissue Sarcoma. Clin Cancer Res. 2008;14(20):6656–62.

    Article  PubMed  CAS  Google Scholar 

  30. Quinn BA, Brake T, Hua X, et al. Induction of ovarian leiomyosarcomas in mice by conditional inactivation of Brca1 and p53. PLoS ONE. 2009;4(12):e8404.

    Article  PubMed  Google Scholar 

  31. Ahmed AA, Etemadmoghadam D, Temple J, et al. Driver mutations in TP53 are ubiquitous in high grade serous carcinoma of the ovary. J Pathol. 2010;221(1):49–56.

    Article  PubMed  CAS  Google Scholar 

  32. Krypuy M, Ahmed AA, Etemadmoghadam D, et al. High resolution melting for mutation scanning of TP53 exons 5–8. BMC Cancer. 2007;7:168.

    Article  PubMed  Google Scholar 

  33. Mollerup S, Jørgensen K, Berge G, et al. Expression of estrogen receptors [alpha] and [beta] in human lung tissue and cell lines. Lung Cancer. 2002;37(2):153–9.

    Article  PubMed  Google Scholar 

  34. O’Cearbhaill R, Zhou Q, Iasonos A, et al. Treatment of advanced uterine leiomyosarcoma with aromatase inhibitors. Gynecol Oncol. 2010;116(3):424–9.

    Article  PubMed  Google Scholar 

  35. D’Adamo DR, Anderson SE, Albritton K, et al. Phase II Study of Doxorubicin and Bevacizumab for Patients With Metastatic Soft-Tissue Sarcomas. J Clin Oncol. 2005;23(28):7135–42.

    Article  PubMed  Google Scholar 

  36. Verschraegen CF, Quinn R, Rabinowitz I, et al. Phase I/II study of docetaxel (D), gemcitabine (G), and bevacizumab (B) in patients (pts) with advanced or recurrent soft tissue sarcoma (STS). J Clin Oncol. 2008;26S Suppl 20:10534.

    Google Scholar 

  37. Sleijfer S, Ray-Coquard I, Papai Z, et al. Pazopanib, a multikinase angiogenesis inhibitor, in patients with relapsed or refractory advanced soft tissue sarcoma: a phase II study from the European organisation for research and treatment of cancer-soft tissue and bone sarcoma group (EORTC study 62043). Journal of Clinical Oncolology. 2009;27(19):3126–32.

    Article  PubMed  CAS  Google Scholar 

  38. Mahmood ST, Agresta S, Vigil C, et al. Phase II study of sunitinib malate, a multi-targeted tyrosine kinase inhibitor in patients with relapsed or refractory soft tissue sarcomas. Focus on 3 prevalent histologies: Leiomyosarcoma, liposarcoma, and malignant fibrous histiocytoma. Int J Cancer. 2011. doi:10.1002/ijc.25843.

  39. George S, Merriam P, Maki RG, et al. Multicenter phase II trial of sunitinib in the treatment of nongastrointestinal stromal tumor sarcomas. J Clin Oncol. 2009;27(19):3154–60.

    Article  PubMed  CAS  Google Scholar 

  40. Maki RG, D’Adamo DR, Keohan ML, et al. Phase II Study of Sorafenib in Patients With Metastatic or Recurrent Sarcomas. Journal of Clinical Oncology. 2009;27(19):3133–40.

    Article  PubMed  CAS  Google Scholar 

  41. Ordonez JL, Osuna D, Garcia-Dominguez DJ, et al. The clinical relevance of molecular genetics in soft tissue sarcomas. Adv Anat Pathol. 2010;17(3):162–81.

    Article  PubMed  Google Scholar 

  42. Jain S, Xu R, Prieto VG, et al. Molecular classification of soft tissue sarcomas and its clinical applications. Int J Clin Exp Pathol. 2010;3(4):416–28.

    PubMed  CAS  Google Scholar 

  43. Chawla SP, Tolcher AW, Staddon AP, et al. Survival results with AP23573, a novel mTOR inhibitor, in patients (pts) with advanced soft tissue or bone sarcomas: Update of phase II trial. J Clin Oncol. 2007;25;18S Suppl 20:10076.

    Google Scholar 

  44. de Alava E. Molecular pathology in sarcomas. Clin Transl Oncol. 2007;9(3):130–44.

    Article  PubMed  Google Scholar 

  45. Pérot G, Derré J, Coindre J-M, et al. Strong smooth muscle differentiation is dependent on myocardin gene amplification in most human retroperitoneal leiomyosarcomas. Cancer Res. 2009;69(6):2269–78.

    Article  PubMed  Google Scholar 

  46. Wang R, Lu YJ, Fisher C, et al. Characterization of chromosome aberrations associated with soft-tissue leiomyosarcomas by twenty-four-color karyotyping and comparative genomic hybridization analysis. Genes Chromosom Cancer. 2001;31(1):54–64.

    Article  PubMed  Google Scholar 

  47. Vogelstein B, Lane D, Levine AJ. Surfing the p53 network. Nature. 2000;408(6810):307–10.

    Article  PubMed  CAS  Google Scholar 

  48. Ito M, Barys L, O’Reilly T, et al. Comprehensive Mapping of p53 Pathway Alterations Reveals an Apparent Role for Both SNP309 and MDM2 Amplification in Sarcomagenesis. Clin Cancer Res. 2011;17(3):416–26.

    Article  PubMed  CAS  Google Scholar 

  49. Calvert H, Azzariti A. The clinical development of inhibitors of poly(ADP-ribose) polymerase. Ann Oncol. 2011;22 suppl 1:i53–i9.

    Article  PubMed  Google Scholar 

  50. •• Fong PC, Boss DS, Yap TA, et al. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med. 2009;361(2):123–34. This important paper supports the hypothesis of synthetic lethality when using PARP inhibitors in the context of tumors with mutations in BRCA1.

    Article  PubMed  CAS  Google Scholar 

  51. Farmer H, McCabe N, Lord CJ, et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature. 2005;434(7035):917–21. doi:10.1038/nature03445.

    Article  PubMed  CAS  Google Scholar 

  52. Mangerich A, Burkle A. How to kill tumor cells with inhibitors of poly(ADP-ribosyl)ation. Int J Cancer. 2011;128(2):251–65.

    Article  PubMed  CAS  Google Scholar 

  53. Moynahan ME, Jasin M. Mitotic homologous recombination maintains genomic stability and suppresses tumorigenesis. Nat Rev Mol Cell Biol. 2010;11(3):196–207.

    Article  PubMed  CAS  Google Scholar 

  54. •• Clark-Knowles KV, Senterman MK, Collins O, et al. Conditional inactivation of Brca1, p53 and Rb in mouse ovaries results in the development of leiomyosarcomas. PLoS One. 2009;4(12):e8534. This paper provides the first evidence that mutations in Brca1 and p53 co-operate in the development of LMS in the mouse.

    Article  PubMed  Google Scholar 

  55. Cannistra SA. Cancer of the ovary. N Engl J Med. 2004;351(24):2519–29.

    Article  PubMed  CAS  Google Scholar 

  56. Holstege H, Horlings HM, Velds A, et al. BRCA1-mutated and basal-like breast cancers have similar aCGH profiles and a high incidence of protein truncating TP53 mutations. BMC Cancer. 2010;10:654.

    Article  PubMed  CAS  Google Scholar 

  57. Bouwman P, Aly A, Escandell JM, et al. 53BP1 loss rescues BRCA1 deficiency and is associated with triple-negative and BRCA-mutated breast cancers. Nat Struct Mol Biol. 2010;17(6):688–95.

    Article  PubMed  CAS  Google Scholar 

  58. Bunting SF, Callen E, Wong N, et al. 53BP1 inhibits homologous recombination in Brca1-deficient cells by blocking resection of DNA breaks. Cell. 2010;141(2):243–54.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

DMT is supported by a Victorian Cancer Agency Clinician Research fellowship.

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Thomas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Collins, I.M., Thomas, D.M. Novel Approaches to Treatment of Leiomyosarcomas. Curr Oncol Rep 13, 316–322 (2011). https://doi.org/10.1007/s11912-011-0173-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11912-011-0173-0

Keywords

Navigation