Skip to main content
Log in

What Is the Optimal Dietary Composition for NAFLD?

  • Fatty Liver Disease (S Harrison and J George, Section Editors)
  • Published:
Current Hepatology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Non-alcoholic fatty liver disease (NAFLD) is a complex condition with multi-organ considerations. Weight reduction effectively reduces steatosis in the short term; however, the effects of dietary composition in the absence of weight loss on hepatic and metabolic measures remain unclear. This review sought to update the evidence for whole of diet approaches and interventions in human studies of NAFLD.

Recent Findings

Assessing dietary composition in NAFLD is complex and requires consideration of food patterns across decades of life. Dietary composition aligned with mostly plant-based, high fibre, unprocessed foods, such as the Mediterranean Diet, can produce hepatic and metabolic benefits in NAFLD irrespective of weight loss. High fructose-sweetened beverages are associated with more severe steatosis, and short-term avoidance has demonstrated rapid improvements in liver health. Regular coffee drinking may have a protective effect against fibrosis in those with established NASH.

Summary

Changing focus from single nutrient to dietary patterns may offer greater translation capability to research findings. Investment in whole food dietary education approaches to engage lifelong health behaviours targeted at culturally appropriate healthy food and lifestyle choices are needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Buzzetti E, Pinzani M, Tsochatzis EA. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD). Metabolism. 2016;65(8):1038–48. https://doi.org/10.1016/j.metabol.2015.12.012.

    Article  CAS  PubMed  Google Scholar 

  2. Paris T, George ES, Roberts SK, Tierney AC. The effects of diet and lifestyle interventions on insulin resistance in patients with nonalcoholic fatty liver disease: a systematic review. Eur J Gastroenterol Hepatol. 2017;

  3. Gil Á, Martínez de Victoria E, Olza J. Indicators for the evaluation of diet quality. Nutricion Hospitalaria. 2015;31(3)

  4. Shivappa N, Steck SE, Hurley TG, Hussey JR, Hébert JR. Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr. 2014;17(8):1689–96.

    Article  PubMed  Google Scholar 

  5. Shivappa N, Hébert JR, Rietzschel ER, De Buyzere ML, Langlois M, Debruyne E, et al. Associations between dietary inflammatory index and inflammatory markers in the Asklepios study. Br J Nutr. 2015;113(4):665–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cantero I, Abete I, Babio N, Arós F, Corella D, Estruch R, et al. Dietary inflammatory index and liver status in subjects with different adiposity levels within the PREDIMED trial. Clin Nutr. 2017;

  7. Trichopoulou A, Costacou T, Bamia C, Trichopoulos D. Adherence to a Mediterranean diet and survival in a Greek population. N Engl J Med. 2003;2003(348):2599–608.

    Article  Google Scholar 

  8. Sotos-Prieto M, Moreno-Franco B, Ordovás JM, León M, Casasnovas JA, Peñalvo JL. Design and development of an instrument to measure overall lifestyle habits for epidemiological research: the Mediterranean Lifestyle (MEDLIFE) index. Public Health Nutr. 2015;18(6):959–67.

    Article  PubMed  Google Scholar 

  9. Dongiovanni P, Valenti LA. Nutrigenomic approach to non-alcoholic fatty liver disease. Int J Mol Sci. 2017;18(7):1534.

    Article  PubMed Central  Google Scholar 

  10. Zivkovic AM, German JB, Sanyal AJ. Comparative review of diets for the metabolic syndrome: implications for nonalcoholic fatty liver disease. Am J Clin Nutr. 2007;86(2):285–300.

    CAS  PubMed  Google Scholar 

  11. McCarthy EM, Rinella ME. The role of diet and nutrient composition in nonalcoholic fatty liver disease. Journal of the Academy of Nutrition & Dietetics. 2012;112(3):401–9. https://doi.org/10.1016/j.jada.2011.10.007.

    Article  CAS  Google Scholar 

  12. Musso G, Gambino R, De Michieli F, Cassader M, Rizzetto M, Durazzo M, et al. Dietary habits and their relations to insulin resistance and postprandial lipemia in nonalcoholic steatohepatitis. Hepatology. 2003;37(4):909–16.

    Article  CAS  PubMed  Google Scholar 

  13. Solga S, Alkhuraishe AR, Clark JM. Dietary composition and nonalcoholic fatty liver disease. Dig Dis Sci. 2004;49(10):1578–83.

    Article  PubMed  Google Scholar 

  14. Valtueña S, Pellegrini N, Ardigò D, Del Rio D, Numeroso F, Scazzina F, et al. Dietary glycemic index and liver steatosis. Am J Clin Nutr. 2006;84(1):136–42.

    PubMed  Google Scholar 

  15. Toshimitsu K, Matsuura B, Ohkubo I, Niiya T, Furukawa S, Hiasa Y, et al. Dietary habits and nutrient intake in non-alcoholic steatohepatitis. Nutrition. 2007;23(1):46–52.

    Article  PubMed  Google Scholar 

  16. Tamura S, Shimomura I. Contribution of adipose tissue and de novo lipogenesis to nonalcoholic fatty liver disease. J Clin Investig. 2005;115(5):1139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bian H, Hakkarainen A, Lundbom N, Yki-Järvinen H. Effects of dietary interventions on liver volume in humans. Obesity. 2014;22(4):989–95.

    Article  CAS  PubMed  Google Scholar 

  18. • Yki-Järvinen H. Nutritional modulation of non-alcoholic fatty liver disease and insulin resistance. Nutrients. 2015;7(11):9127–38. Excellent review updating latest mechanistic evidence for the effects of highly controlled modulation of dietary composition in eucaloric conditions (under research conditions) and potential implications for translation into real world clinical trials.

    Article  PubMed  PubMed Central  Google Scholar 

  19. • Thoma C, Day CP, Trenell MI. Lifestyle interventions for the treatment of non-alcoholic fatty liver disease in adults: a systematic review. J Hepatol. 2012;56(1):255–66. The most recent systematic review in NAFLD and lifestyle interventions.

    Article  PubMed  Google Scholar 

  20. Hickman IJ, Byrne NM, Croci I, Chachay VS, Clouston AD, Hills AP et al. A pilot randomised study of the metabolic and histological effects of exercise in non-alcoholic steatohepatitis. Journal of diabetes and Metabolism 2013;4(8).

  21. Kirk E, Reeds DN, Finck BN, Mayurranjan MS, Patterson BW, Klein S. Dietary fat and carbohydrates differentially alter insulin sensitivity during caloric restriction. Gastroenterology. 2009;136(5):1552–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. • Gibson PS, Lang S, Dhawan A, Fitzpatrick E, Blumfield ML, Truby H, et al. Systematic review: nutrition and physical activity in the management of paediatric nonalcoholic fatty liver disease. J Pediatr Gastroenterol Nutr. 2017;65(2):141–9. The most recent systematic review in paediatric NAFLD and lifestyle interventions.

    Article  PubMed  Google Scholar 

  23. Yki-Järvinen H. Nutritional modulation of nonalcoholic fatty liver disease and insulin resistance: human data. Current Opinion in Clinical Nutrition & Metabolic Care. 2010;13(6):709–14.

    Article  Google Scholar 

  24. Peng L, Wang J, Li F. Weight reduction for non-alcoholic fatty liver disease. Cochrane Database Syst Rev. 2011; (6).

  25. Schwarz J-M, Noworolski SM, Wen MJ, Dyachenko A, Prior JL, Weinberg ME, et al. Effect of a high-fructose weight-maintaining diet on lipogenesis and liver fat. The Journal of Clinical Endocrinology & Metabolism. 2015;100(6):2434–42.

    Article  CAS  Google Scholar 

  26. Softic S, Cohen DE, Kahn CR. Role of dietary fructose and hepatic de novo lipogenesis in fatty liver disease. Dig Dis Sci. 2016;61(5):1282–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Abdelmalek MF, Suzuki A, Guy C, Unalp-Arida A, Colvin R, Johnson RJ, et al. Increased fructose consumption is associated with fibrosis severity in patients with nonalcoholic fatty liver disease. Hepatology. 2010;51(6):1961–71. https://doi.org/10.1002/hep.23535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Maersk M, Belza A, Stodkilde-Jorgensen H, Ringgaard S, Chabanova E, Thomsen H, et al. Sucrose-sweetened beverages increase fat storage in the liver, muscle, and visceral fat depot: a 6-mo randomized intervention study. Am J Clin Nutr. 2012;95(2):283–9. https://doi.org/10.3945/ajcn.111.022533.

    Article  CAS  PubMed  Google Scholar 

  29. Moore JB, Gunn PJ, Fielding BA. The role of dietary sugars and de novo lipogenesis in non-alcoholic fatty liver disease. Nutrients. 2014;6(12):5679–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tappy L, Lê K-A. Does fructose consumption contribute to non-alcoholic fatty liver disease? Clinics and Research in Hepatology and Gastroenterology. 2012;36(6):554–60.

    Article  CAS  PubMed  Google Scholar 

  31. • O'Sullivan TA, Oddy WH, Bremner AP, Sherriff JL, Ayonrinde OT, Olynyk JK, et al. Lower fructose intake may help protect against development of nonalcoholic fatty liver in adolescents with obesity. J Pediatr Gastroenterol Nutr. 2014;58(5):624–31. Robust dietary methodology in a well-controlled longitudinal study, which identified the confounding issue of body mass index in the relationship between fructose and development of NAFLD.

    Article  PubMed  Google Scholar 

  32. Vos MB. Nutrition, nonalcoholic fatty liver disease and the microbiome: recent progress in the field. Curr Opin Lipidol. 2014;25(1):61–6. https://doi.org/10.1097/MOL.0000000000000043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Schwarz J-M, Noworolski SM, Erkin-Cakmak A, Korn NJ, Wen MJ, Tai VW et al. Effects of dietary fructose restriction on liver fat, de novo lipogenesis, and insulin kinetics in children with obesity. Gastroenterology. 2017.

  34. Saab S, Mallam D, Cox GA, Tong MJ. Impact of coffee on liver diseases: a systematic review. Liver Int. 2014;34(4):495–504.

    Article  PubMed  Google Scholar 

  35. Goh GBB, Chow WC, Wang R, Yuan JM, Koh WP. Coffee, alcohol and other beverages in relation to cirrhosis mortality: the Singapore Chinese Health Study. Hepatology. 2014;60(2):661–9.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Zelber-Sagi S, Salomone F, Webb M, Lotan R, Yeshua H, Halpern Z, et al. Coffee consumption and nonalcoholic fatty liver onset: a prospective study in the general population. Transl Res. 2015;165(3):428–36.

    Article  CAS  PubMed  Google Scholar 

  37. Alferink LJ, Fittipaldi J, Kiefte-de Jong JC, Taimr P, Hansen BE, Metselaar HJ et al. Coffee and herbal tea consumption is associated with lower liver stiffness in the general population: the Rotterdam study. J Hepatol. 2017.

  38. Zelber-Sagi S, Nitzan-Kaluski D, Goldsmith R, Webb M, Blendis L, Halpern Z, et al. Long term nutritional intake and the risk for non-alcoholic fatty liver disease (NAFLD): a population based study. J Hepatol. 2007;47(5):711–7.

    Article  CAS  PubMed  Google Scholar 

  39. Da Silva HE, Arendt BM, Noureldin SA, Therapondos G, Guindi M, Allard JPA. Cross-sectional study assessing dietary intake and physical activity in Canadian patients with nonalcoholic fatty liver disease vs healthy controls. J Acad Nutr Diet. 2014;114(8):1181–94.

    Article  PubMed  Google Scholar 

  40. Dinu M, Pagliai G, Casini A, Sofi F. Mediterranean diet and multiple health outcomes: an umbrella review of meta-analyses of observational studies and randomised trials. Eur J Clin Nutr. 2017;

  41. Sofi F, Macchi C, Abbate R, Gensini GF, Casini A. Mediterranean diet and health status: an updated meta-analysis and a proposal for a literature-based adherence score. Public Health Nutr. 2014;17(12):2769–82. https://doi.org/10.1017/S1368980013003169.

    Article  PubMed  Google Scholar 

  42. Kontogianni MD, Tileli N, Margariti A, Georgoulis M, Deutsch M, Tiniakos D, et al. Adherence to the Mediterranean diet is associated with the severity of non-alcoholic fatty liver disease. Clin Nutr. 2014;33(4):678–83. https://doi.org/10.1016/j.clnu.2013.08.014.

    Article  CAS  PubMed  Google Scholar 

  43. Aller R, Izaola O, de la Fuente B, de Luis D. Mediterranean diet is associated with liver histology in patients with non alcoholic fatty liver disease. Nutricion hospitalaria. 2015;32(6):2518–24.

    PubMed  Google Scholar 

  44. Chan R, Wong VW, Chu WC, Wong GL, Li LS, Leung J, et al. Diet-quality scores and prevalence of nonalcoholic fatty liver disease: a population study using proton-magnetic resonance spectroscopy. PLoS ONE [Electronic Resource]. 2015;10(9):e0139310. https://doi.org/10.1371/journal.pone.0139310.

    Article  Google Scholar 

  45. Della Corte C, Mosca A, Vania A, Alterio A, Iasevoli S, Nobili V. Good adherence to the Mediterranean diet reduces the risk for NASH and diabetes in pediatric patients with obesity: the results of an Italian study. Nutrition. 2017;39:8–14. https://doi.org/10.1016/j.nut.2017.02.008.

    Article  PubMed  Google Scholar 

  46. •• Ryan MC, Itsiopoulos C, Thodis T, Ward G, Trost N, Hofferberth S, et al. The Mediterranean diet improves hepatic steatosis and insulin sensitivity in individuals with non-alcoholic fatty liver disease. J Hepatol. 2013;59(1):138–43. https://doi.org/10.1016/j.jhep.2013.02.012. The first randomised controlled trial demonstrating the efficacy of a MD in biopsy-proven NAFLD patients.

    Article  CAS  PubMed  Google Scholar 

  47. Gelli C, Tarocchi M, Abenavoli L, Di Renzo L, Galli A, De Lorenzo A. Effect of a counseling-supported treatment with the Mediterranean diet and physical activity on the severity of the non-alcoholic fatty liver disease. World J Gastroenterol. 2017;23(17):3150.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Trovato FM, Catalano D, Martines GF, Pace P, Trovato GM. Mediterranean diet and non-alcoholic fatty liver disease: the need of extended and comprehensive interventions. Clin Nutr. 2015;34(1):86–8. https://doi.org/10.1016/j.clnu.2014.01.018.

    Article  PubMed  Google Scholar 

  49. Bozzetto L, Prinster A, Annuzzi G, Costagliola L, Mangione A, Vitelli A, et al. Liver fat is reduced by an isoenergetic MUFA diet in a controlled randomized study in type 2 diabetic patients. Diabetes Care. 2012;35(7):1429–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Fraser A, Abel R, Lawlor D, Fraser D, Elhayany AA. Modified Mediterranean diet is associated with the greatest reduction in alanine aminotransferase levels in obese type 2 diabetes patients: results of a quasi-randomised controlled trial. Diabetologia. 2008;51(9):1616–22.

    Article  CAS  PubMed  Google Scholar 

  51. Abenavoli L, Greco M, Nazionale I, Peta V, Milic N, Accattato F, et al. Effects of Mediterranean diet supplemented with silybin-vitamin E-phospholipid complex in overweight patients with non-alcoholic fatty liver disease. Expert review of gastroenterology & hepatology. 2015;9(4):519–27. https://doi.org/10.1586/17474124.2015.1004312.

    Article  CAS  Google Scholar 

  52. Papamiltiadous ES, Roberts SK, Nicoll AJ, Ryan MC, Itsiopoulos C, Salim A, et al. A randomised controlled trial of a Mediterranean dietary intervention for adults with non alcoholic fatty liver disease (MEDINA): study protocol. BMC Gastroenterol. 2016;16(1):1.

    Article  Google Scholar 

  53. Bach-Faig A, Berry EM, Lairon D, Reguant J, Trichopoulou A, Dernini S, et al. Mediterranean diet pyramid today. Science and cultural updates. Public Health Nutr. 2011;14(12A):2274–84.

    Article  PubMed  Google Scholar 

  54. Visioli F, Galli C. Biological properties of olive oil phytochemicals. Crit Rev Food Sci Nutr. 2002;42(3):209–21.

    Article  CAS  PubMed  Google Scholar 

  55. Sacks F. Dietary fat, the mediterranean diet, and health: reports from scientific exchanges, 1998 and 2000-introduction. 2002.

  56. Cicerale S, Lucas L, Keast R. Biological activities of phenolic compounds present in virgin olive oil. Int J Mol Sci. 2010;11(2):458–79. https://doi.org/10.3390/ijms11020458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Slavin JL, Martini MC, Jacobs DR, Marquart L. Plausible mechanisms for the protectiveness of whole grains. Am J Clin Nutr. 1999;70(3):459s–63s.

    CAS  PubMed  Google Scholar 

  58. Albenberg LG, Wu GD. Diet and the intestinal microbiome: associations, functions, and implications for health and disease. Gastroenterology. 2014;146(6):1564–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Oya J, Nakagami T, Sasaki S, Jimba S, Murakami K, Kasahara T, et al. Intake of n-3 polyunsaturated fatty acids and non-alcoholic fatty liver disease: a cross-sectional study in Japanese men and women. Eur J Clin Nutr. 2010;64(10):1179–85.

    Article  CAS  PubMed  Google Scholar 

  60. Zelber-Sagi S, Nitzan-Kaluski D, Halpern Z, Oren R. Prevalence of primary non-alcoholic fatty liver disease in a population-based study and its association with biochemical and anthropometric measures. Liver Int. 2006;26(7):856–63. https://doi.org/10.1111/j.1478-3231.2006.01311.x.

    Article  PubMed  Google Scholar 

  61. Parker HM, Johnson NA, Burdon CA, Cohn JS, O’Connor HT, George J. Omega-3 supplementation and non-alcoholic fatty liver disease: a systematic review and meta-analysis. J Hepatol. 2012;56(4):944–51. https://doi.org/10.1016/j.jhep.2011.08.018.

    Article  CAS  PubMed  Google Scholar 

  62. Simopoulos AP. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed Pharmacother. 2002;56(8):365–79. https://doi.org/10.1016/S0753-3322(02)00253-6.

    Article  CAS  PubMed  Google Scholar 

  63. Patterson E, Wall R, Fitzgerals GF, Ross RP, Stanton C. Health implications of high dietary omega-6 polyunsaturated fatty acids. Journal of Nutrition and Metabolism. 2012;2012:16. https://doi.org/10.1155/2012/539426.

    Article  Google Scholar 

  64. Turati F, Trichopoulos D, Polesel J, Bravi F, Rossi M, Talamini R, et al. Mediterranean diet and hepatocellular carcinoma. J Hepatol. 2014;60(3):606–11.

    Article  PubMed  Google Scholar 

  65. Freedman ND, Cross AJ, McGlynn KA, Abnet CC, Park Y, Hollenbeck AR, et al. Association of meat and fat intake with liver disease and hepatocellular carcinoma in the NIH-AARP cohort. J Natl Cancer Inst. 2010;102(17):1354–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Keys A, Mienotti A, Karvonen MJ, Aravanis C, Blackburn H, Buzina R, et al. The diet and 15-year death rate in the seven countries study. Am J Epidemiol. 1986;124(6):903–15.

    Article  CAS  PubMed  Google Scholar 

  67. Shim P, Choi D, Park Y. Association of Blood Fatty Acid Composition and Dietary Pattern with the risk of non-alcoholic fatty liver disease in patients who underwent cholecystectomy. Ann Nutr Metab. 2017;70(4):303–11.

    Article  CAS  PubMed  Google Scholar 

  68. Yang C-Q, Shu L, Wang S, Wang J-J, Zhou Y, Xuan Y-J, et al. Dietary patterns modulate the risk of non-alcoholic fatty liver disease in Chinese adults. Nutrients. 2015;7(6):4778–91.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Poulsen SK, Due A, Jordy AB, Kiens B, Stark KD, Stender S, et al. Health effect of the new Nordic diet in adults with increased waist circumference: a 6-mo randomized controlled trial. Am J Clin Nutr. 2014;99(1):35–45.

    Article  CAS  PubMed  Google Scholar 

  70. Bäckhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A. 2004;101(44):15718–23.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444(7122):1027–131.

    Article  PubMed  Google Scholar 

  72. Le Roy T, Llopis M, Lepage P, Bruneau A, Rabot S, Bevilacqua C, et al. Intestinal microbiota determines development of non-alcoholic fatty liver disease in mice. Gut. 2013;62(12):1787–94.

    Article  PubMed  Google Scholar 

  73. Boursier J, Diehl AM. Nonalcoholic fatty liver disease and the gut microbiome. Clin Liver Dis. 2016;20(2):263–75.

    Article  PubMed  Google Scholar 

  74. Boursier J, Mueller O, Barret M, Machado M, Fizanne L, Araujo-Perez F, et al. The severity of nonalcoholic fatty liver disease is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota. Hepatology. 2016;63(3):764–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, Keilbaugh SA, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science (New York, NY). 2011;334(6052):105–8. https://doi.org/10.1126/science.1208344.

    Article  CAS  Google Scholar 

  76. Gao X, Zhu Y, Wen Y, Liu G, Wan C. Efficacy of probiotics in non-alcoholic fatty liver disease in adult and children: a meta-analysis of randomized controlled trials. Hepatology research : the official journal of the Japan Society of Hepatology. 2016;46(12):1226–33. https://doi.org/10.1111/hepr.12671.

    Article  CAS  Google Scholar 

  77. Buss C, Valle-Tovo C, Miozzo S, Alves de Mattos A. Probiotics and synbiotics may improve liver aminotransferases levels in non-alcoholic fatty liver disease patients. Ann Hepatol. 2014;13(5):482–8.

    PubMed  Google Scholar 

  78. Tarantino G, Finelli C. Systematic review on intervention with prebiotics/probiotics in patients with obesity-related nonalcoholic fatty liver disease. Future Microbiol. 2015;10(5):889–902. https://doi.org/10.2217/fmb.15.13.

    Article  CAS  PubMed  Google Scholar 

  79. •• Ferolla SM, Couto CA, Costa-Silva L, Armiliato GN, Pereira CA, Martins FS, et al. Beneficial effect of synbiotic supplementation on hepatic steatosis and anthropometric parameters, but not on gut permeability in a population with nonalcoholic steatohepatitis. Nutrients. 2016;8(7):397. https://doi.org/10.3390/nu8070397. First RCT in NASH demonstrating synbiotics may further enhance metabolic and hepatic benefits achieved with modest weight loss.

    Article  PubMed Central  Google Scholar 

  80. St-Onge M-P, Ard J, Baskin ML, Chiuve SE, Johnson HM, Kris-Etherton P, et al. Meal timing and frequency: implications for cardiovascular disease prevention: a scientific statement from the American Heart Association. Circulation. 2017;135(9):e96–e121.

    Article  PubMed  Google Scholar 

  81. Hesketh J. Personalised nutrition: how far has nutrigenomics progressed? Eur J Clin Nutr. 2013;67(5):430.

    Article  CAS  PubMed  Google Scholar 

  82. Roche HM. Nutrigenomics—new approaches for human nutrition research. J Sci Food Agric. 2006;86(8):1156–63.

    Article  CAS  Google Scholar 

  83. Sookoian S, Pirola CJ. Meta-analysis of the influence of I148M variant of patatin-like phospholipase -3 gene (PNPLA3) on the susceptibility and histological severity of nonalcoholic fatty liver disease. Hepatology. 2011;53(6):1883–94.

    Article  CAS  PubMed  Google Scholar 

  84. Sookoian S, Pirola CJ. Genetic predisposition in nonalcoholic fatty liver disease. Clinical and Molecular Hepatology. 2017;23(1):1.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Wilson PA, Gardner SD, Lambie NM, Commans SA, Crowther DJ. Characterization of the human patatin-like phospholipase family. J Lipid Res. 2006;47(9):1940–9.

    Article  CAS  PubMed  Google Scholar 

  86. Takaki A, Kawai D, Yamamoto K. Molecular mechanisms and new treatment strategies for non-alcoholic steatohepatitis (NASH). Int J Mol Sci. 2014;15(5):7352–79.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Krawczyk M, Grünhage F, Zimmer V, Lammert F. Variant adiponutrin (PNPLA3) represents a common fibrosis risk gene: non-invasive elastography-based study in chronic liver disease. J Hepatol. 2011;55(2):299–306.

    Article  CAS  PubMed  Google Scholar 

  88. Shen J-H, Li Y-L, Li D, Wang N-N, Jing L, Huang Y-H. The rs738409 (I148M) variant of the PNPLA3 gene and cirrhosis: a meta-analysis. J Lipid Res. 2015;56(1):167–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Liu Y-L, Reeves HL, Burt AD, Tiniakos D, McPherson S, Leathart JB et al. TM6SF2 rs58542926 influences hepatic fibrosis progression in patients with non-alcoholic fatty liver disease. Nat Commun. 2014;5.

  90. Powell EE, Kroon PA. Low density lipoprotein receptor and 3-hydroxy-3-methylglutaryl coenzyme a reductase gene expression in human mononuclear leukocytes is regulated coordinately and parallels gene expression in human liver. J Clin Investig. 1994;93(5):2168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ziegler-Heitbrock H. Definition of human blood monocytes. J Leukoc Biol. 2000;67(5):603–6.

    CAS  PubMed  Google Scholar 

  92. de Mello VDF, Kolehmanien M, Schwab U, Pulkkinen L, Uusitupa M. Gene expression of peripheral blood mononuclear cells as a tool in dietary intervention studies: what do we know so far? Mol Nutr Food Res. 2012;56(7):1160–72.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingrid J. Hickman.

Ethics declarations

Conflict of Interest

Elena S George, Audrey C Tierney, Katrina L Campbell, Graeme A Macdonald, and Ingrid J Hickman each declare no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Fatty Liver Disease

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

George, E.S., Tierney, A.C., Campbell, K.L. et al. What Is the Optimal Dietary Composition for NAFLD?. Curr Hepatology Rep 16, 346–355 (2017). https://doi.org/10.1007/s11901-017-0373-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11901-017-0373-7

Keywords

Navigation