Skip to main content

Advertisement

Log in

Molecular and physiologic actions of insulin related to production of nitric oxide in vascular endothelium

  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Insulin has important vascular actions that regulate blood flow, in addition to its classical actions to coordinate glucose homeostasis. Insulin-stimulated production of nitric oxide in vascular endothelium results in capillary recruitment and vasodilation that diverts and increases blood flow to skeletal muscle and consequently increases glucose disposal. Thus, vascular actions of insulin may be essential for coupling hemodynamic and metabolic homeostasis. A complete biochemical signaling pathway linking the insulin receptor to activation of endothelial nitric oxide synthase in vascular endothelium has recently been elucidated. Moreover, the time course and dose response for capillary recruitment in response to physiologic concentrations of insulin parallels that of insulinmediated glucose uptake in vivo. Taken together, these observations suggest a molecular mechanism that may help to explain how insulin resistance contributes to cardiovascular components of the metabolic syndrome and vascular complications of diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Simionescu M, Gafencu A, Antohe F: Transcytosis of plasma macromolecules in endothelial cells: a cell biological survey. Microsc Res Tech 2002, 57:269–288.

    Article  PubMed  CAS  Google Scholar 

  2. Zeng G, Quon MJ: Insulin-stimulated production of nitric oxide is inhibited by wortmannin. Direct measurement in vascular endothelial cells. J Clin Invest 1996, 98:894–898.

    PubMed  CAS  Google Scholar 

  3. Zeng G, Nystrom FH, Ravichandran LV, et al.: Roles for insulin receptor, PI3-kinase, and Akt in insulin-signaling pathways related to production of nitric oxide in human vascular endothelial cells. Circulation 2000, 101:1539–1545. Critical role for insulin receptor, PI3-kinase, and Akt for insulin-mediated production of NO.

    PubMed  CAS  Google Scholar 

  4. Montagnani M, Chen H, Barr VA, et al.: Insulin-stimulated activation of eNOS is independent of Ca2+ but requires phosphorylation by Akt at Ser(1179). J Biol Chem 2001, 276:30392–30398. Insulin signaling related to production of NO is distinct from the classical G-protein-coupled pathway.

    Article  PubMed  CAS  Google Scholar 

  5. Montagnani M, Ravichandran LV, Chen H, et al.: Insulin receptor substrate-1 and phosphoinositide-dependent kinase-1 are required for insulin-stimulated production of nitric oxide in endothelial cells. Mol Endocrinol 2002, 16:1931–1942. IRS-1 and PDK-1 are critical for insulin-mediated production of NO.

    Article  PubMed  CAS  Google Scholar 

  6. Baron AD: Hemodynamic actions of insulin. Am J Physiol 1994, 267:E187-E202.

    PubMed  CAS  Google Scholar 

  7. Vincent MA, Dawson D, Clark AD, et al.: Skeletal muscle microvascular recruitment by physiological hyperinsulinemia precedes increases in total blood flow. Diabetes 2002, 51:42–48. Insulin recruits muscle capillaries before changes in total limb flow.

    Article  PubMed  CAS  Google Scholar 

  8. Vincent MA, Barrett EJ: Insulin-induced capillary recruitment precedes changes in skeletal muscle glucose uptake. Diabetes 2002, 51(suppl 2):A31.

    Google Scholar 

  9. Vincent MA, Clerk LH, Barrett E: Skeletal muscle microvascular recruitment is more sensitive than femoral blood flow or glucose disposal. Diabetes 2003, 52(suppl 2):A205.

    Google Scholar 

  10. Vincent MA, Lindner JR, Barrett EJ, et al.: Inhibiting NOS blocks microvascular recruitment and blunts muscle glucose uptake in response to insulin. Am J Physiol 2003, 285:E123-E130. Insulin-mediated muscle capillary recruitment is NO dependent.

    CAS  Google Scholar 

  11. Montagnani M, Quon MJ: Insulin action in vascular endothelium: potential mechanisms linking insulin resistance with hypertension. Diabetes Obes Metab 2000, 2:285–292.

    Article  PubMed  CAS  Google Scholar 

  12. Stuehr DJ: Mammalian nitric oxide synthases. Biochim Biophys Acta 1999, 1411:217–230.

    Article  PubMed  CAS  Google Scholar 

  13. Michel JB, Feron O, Sacks D, et al.: Reciprocal regulation of endothelial nitric-oxide synthase by Ca2+ calmodulin and caveolin. J Biol Chem 1997, 272:15583–15586.

    Article  PubMed  CAS  Google Scholar 

  14. Nystrom FH, Quon MJ: Insulin signalling: metabolic pathways and mechanisms for specificity. Cell Signal 1999, 11:563–574.

    Article  PubMed  CAS  Google Scholar 

  15. White MF, Yenush L: The IRS-signaling system: a network of docking proteins that mediate insulin and cytokine action. Curr Top Microbiol Immunol 1998, 228:179–208.

    PubMed  CAS  Google Scholar 

  16. Vanhaesebroeck B, Leevers SJ, Ahmadi K, et al.: Synthesis and function of 3-phosphorylated inositol lipids. Annu Rev Biochem 2001, 70:535–602.

    Article  PubMed  CAS  Google Scholar 

  17. Toker A, Newton AC: Cellular signaling: pivoting around PDK-1. Cell 2000, 103:185–188.

    Article  PubMed  CAS  Google Scholar 

  18. Chen H, Nystrom FH, Dong LQ, et al.: Insulin stimulates increased catalytic activity of phosphoinositide-dependent kinase-1 by a phosphorylation-dependent mechanism. Biochemistry 2001, 40:11851–11859.

    Article  PubMed  CAS  Google Scholar 

  19. Vecchione C, Maffei A, Colella S, et al.: Leptin effect on endothelial nitric oxide is mediated through Akt-endothelial nitric oxide synthase phosphorylation pathway. Diabetes 2002, 51:168–173.

    Article  PubMed  CAS  Google Scholar 

  20. Dimmeler S, Fleming I, Fisslthaler B, et al.: Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature 1999, 399:601–605.

    Article  PubMed  CAS  Google Scholar 

  21. Baron AD, Brechtel-Hook G, Johnson A, et al.: Effect of perfusion rate on the time course of insulin-mediated skeletal muscle glucose uptake. Am J Physiol 1996, 271:E1067–1072.

    PubMed  CAS  Google Scholar 

  22. Rattigan S, Clark MG, Barrett EJ: Hemodynamic actions of insulin in rat skeletal muscle: evidence for capillary recruitment. Diabetes 1997, 46:1381–1388.

    Article  PubMed  CAS  Google Scholar 

  23. Dawson D, Vincent MA, Barrett EJ, et al.: Vascular recruitment in skeletal muscle during exercise and hyperinsulinemia assessed by contrast ultrasound. Am J Physiol 2002, 282:E714-E720.

    CAS  Google Scholar 

  24. Zhang L, Richards SM, Rattigan S, et al.: Capillary recruitment in muscle is a highly sensitive event in insulin action in vivo. Diabetes 2003, 52(suppl 2):A206.

    Google Scholar 

  25. Coggins M, Lindner J, Rattigan S, et al.: Physiologic hyperinsulinemia enhances human skeletal muscle perfusion by capillary recruitment. Diabetes 2001, 50:2682–2690.

    Article  PubMed  CAS  Google Scholar 

  26. Scherrer U, Randin D, Vollenweider P, et al.: Nitric oxide release accounts for insulin's vascular effects in humans. J Clin Invest 1994, 94:2511–2515.

    PubMed  CAS  Google Scholar 

  27. Hillier TA, Fryburg DA, Jahn LA, et al.: Extreme hyperinsulinemia unmasks insulin's effect to stimulate protein synthesis in the human forearm. Am J Physiol 1998, 274:E1067-E1074.

    PubMed  CAS  Google Scholar 

  28. Steinberg HO, Brechtel G, Johnson A, et al.: Insulin-mediated skeletal muscle vasodilation is nitric oxide dependent. A novel action of insulin to increase nitric oxide release. J Clin Invest 1994, 94:1172–1179.

    PubMed  CAS  Google Scholar 

  29. Chen YL, Messina EJ: Dilation of isolated skeletal muscle arterioles by insulin is endothelium dependent and nitric oxide mediated. Am J Physiol 1996, 270:H2120-H2124.

    PubMed  CAS  Google Scholar 

  30. Yki-Jarvinen H, Utriainen T: Insulin-induced vasodilatation: physiology or pharmacology? Diabetologia 1998, 41:369–379.

    Article  PubMed  CAS  Google Scholar 

  31. Cardillo C, Nambi SS, Kilcoyne CM, et al.: Insulin stimulates both endothelin and nitric oxide activity in the human forearm. Circulation 1999, 100:820–825.

    PubMed  CAS  Google Scholar 

  32. Mather KJ, Mirzamohammadi B, Lteif A, et al.: Endothelin contributes to basal vascular tone and endothelial dysfunction in human obesity and type 2 diabetes. Diabetes 2002, 51:3517–3523.

    Article  PubMed  CAS  Google Scholar 

  33. Anderson EA, Hoffman RP, Balon TW, et al.: Hyperinsulinemia produces both sympathetic neural activation and vasodilation in normal humans. J Clin Invest 1991, 87:2246–2252.

    PubMed  CAS  Google Scholar 

  34. Sartori C, Trueb L, Nicod P, et al.: Effects of sympathectomy and nitric oxide synthase inhibition on vascular actions of insulin in humans. Hypertension 1999, 34:586–589.

    PubMed  CAS  Google Scholar 

  35. Creager MA, Liang CS, Coffman JD: Beta adrenergic-mediated vasodilator response to insulin in the human forearm. J Pharmacol Exp Ther 1985, 235:709–714.

    PubMed  CAS  Google Scholar 

  36. Vierhapper H: Effect of exogenous insulin on blood pressure regulation in healthy and diabetic subjects. Hypertension 1985, 7:1149–1153.

    Google Scholar 

  37. Quon MJ, Chen H, Ing BL, et al.: Roles of 1-phosphatidylinositol 3-kinase and ras in regulating translocation of GLUT4 in transfected rat adipose cells. Mol Cell Biol 1995, 15:5403–5411.

    PubMed  CAS  Google Scholar 

  38. Quon MJ, Chen H, Lin CH, et al.: Effects of overexpressing wild-type and mutant PDGF receptors on translocation of GLUT4 in transfected rat adipose cells. Biochem Biophys Res Commun 1996, 226:587–594.

    Article  PubMed  CAS  Google Scholar 

  39. Huang PL, Huang Z, Mashimo H, et al.: Hypertension in mice lacking the gene for endothelial nitric oxide synthase. Nature 1995, 377:239–242.

    Article  PubMed  CAS  Google Scholar 

  40. Duplain H, Burcelin R, Sartori C, et al.: Insulin resistance, hyperlipidemia, and hypertension in mice lacking endothelial nitric oxide synthase. Circulation 2001, 104:342–345.

    PubMed  CAS  Google Scholar 

  41. Shankar RR, Wu Y, Shen HQ, et al.: Mice with gene disruption of both endothelial and neuronal nitric oxide synthase exhibit insulin resistance. Diabetes 2000, 49:684–687.

    Article  PubMed  CAS  Google Scholar 

  42. Tamemoto H, Kadowaki T, Tobe K, et al.: Insulin resistance and growth retardation in mice lacking insulin receptor substrate-1. Nature 1994, 372:182–186.

    Article  PubMed  CAS  Google Scholar 

  43. Abe H, Yamada N, Kamata K, et al.: Hypertension, hypertriglyceridemia, and impaired endothelium-dependent vascular relaxation in mice lacking insulin receptor substrate-1. J Clin Invest 1998, 101:1784–1788.

    PubMed  CAS  Google Scholar 

  44. Vicent D, Ilany J, Kondo T, et al.: The role of endothelial insulin signaling in the regulation of vascular tone and insulin resistance. J Clin Invest 2003, 111:1373–1380.

    Article  PubMed  CAS  Google Scholar 

  45. Renkin EM: Control of microcirculation and blood-tissue exchange. In Handbook of Physiology. The Cardiovascular System IV. Microcirculation. Edited by Renkin EM, et al. Bethesda, MD: American Physiological Society; 1984:627–687.

    Google Scholar 

  46. Grubb B, Snarr JF: Effect of flow rate and glucose concentration on glucose uptake rate by the rat limb. Proc Soc Exp Biol Med 1977, 154:33–36.

    PubMed  CAS  Google Scholar 

  47. Rattigan S, Clark MG, Barrett EJ: Acute vasoconstrictioninduced insulin resistance in rat muscle in vivo. Diabetes 1999, 48:564–569.

    Article  PubMed  CAS  Google Scholar 

  48. Clerk LH, Rattigan S, Clark MG: Lipid infusion impairs physiologic insulin-mediated capillary recruitment and muscle glucose uptake in vivo. Diabetes 2002, 51:1138–1145.

    Article  PubMed  CAS  Google Scholar 

  49. Wallis MG, Wheatley CM, Rattigan S, et al.: Insulin-mediated hemodynamic changes are impaired in muscle of Zucker obese rats. Diabetes 2002, 51:3492–3498.

    Article  PubMed  CAS  Google Scholar 

  50. Rattigan S, Wallis MG, Youd JM, et al.: Exercise training improves insulin-mediated capillary recruitment in association with glucose uptake in rat hindlimb. Diabetes 2001, 50:2659–2665.

    Article  PubMed  CAS  Google Scholar 

  51. Clark MG, Wallis MG, Barrett EJ, et al.: Blood flow and muscle metabolism: a focus on insulin action. Am J Physiol Endocrinol Metab 2003, 284:E241-E258.

    PubMed  CAS  Google Scholar 

  52. Laakso M, Edelman SV, Brechtel G, et al.: Impaired insulinmediated skeletal muscle blood flow in patients with NIDDM. Diabetes 1992, 41:1076–1083.

    Article  PubMed  CAS  Google Scholar 

  53. McIntyre EA, Walker M: Genetics of type 2 diabetes and insulin resistance: knowledge from human studies. Clin Endocrinol (Oxf) 2002, 57:303–311.

    Article  CAS  Google Scholar 

  54. Karam JH: Reversible insulin resistance in non-insulindependent diabetes mellitus. Horm Metab Res 1996, 28:440–444.

    Article  PubMed  CAS  Google Scholar 

  55. Paolisso G, Giugliano D: Oxidative stress and insulin action: is there a relationship? Diabetologia 1996, 39:357–363.

    PubMed  CAS  Google Scholar 

  56. Jiang ZY, Lin YW, Clemont A, et al.: Characterization of selective resistance to insulin signaling in the vasculature of obese Zucker (fa/fa) rats. J Clin Invest 1999, 104:447–457.

    Article  PubMed  CAS  Google Scholar 

  57. Cheng TH, Shih NL, Chen SY, et al.: Reactive oxygen species mediate cyclic strain-induced endothelin-1 gene expression via Ras/Raf/extracellular signal-regulated kinase pathway in endothelial cells. J Mol Cell Cardiol 2001, 33:1805–1814.

    Article  PubMed  CAS  Google Scholar 

  58. Montagnani M, Golovchenko I, Kim I, et al.: Inhibition of phosphatidylinositol 3-kinase enhances mitogenic actions of insulin in endothelial cells. J Biol Chem 2002, 277:1794–1799. In vitro model of insulin resistance causing enhanced stimulation of the MAPK pathway.

    Article  PubMed  CAS  Google Scholar 

  59. Begum N, Sandu OA, Ito M, et al.: Active Rho kinase (ROKalpha) associates with insulin receptor substrate-1 and inhibits insulin signaling in vascular smooth muscle cells. J Biol Chem 2002, 277:6214–6222.

    Article  PubMed  CAS  Google Scholar 

  60. Katakam PV, Ujhelyi MR, Hoenig ME, et al.: Endothelial dysfunction precedes hypertension in diet-induced insulin resistance. Am J Physiol 1998, 275:R788–792.

    PubMed  CAS  Google Scholar 

  61. Williams SB, Cusco JA, Roddy MA, et al.: Impaired nitric oxidemediated vasodilation in patients with non-insulin-dependent diabetes mellitus. J Am Coll Cardiol 1996, 27:567–574.

    Article  PubMed  CAS  Google Scholar 

  62. Tack CJ, Smits P, Willemsen JJ, et al.: Effects of insulin on vascular tone and sympathetic nervous system in NIDDM. Diabetes 1996, 45:15–22.

    Article  PubMed  CAS  Google Scholar 

  63. Hardin DS, Azzarelli B, Edwards J, et al.: Mechanisms of enhanced insulin sensitivity in endurance-trained athletes: effects on blood flow and differential expression of GLUT 4 in skeletal muscles. J Clin Endocrinol Metab 1995, 80:2437–2446.

    Article  PubMed  CAS  Google Scholar 

  64. Coggins M, Fasy E, Lindner J, et al.: Obesity blunts insulin's action to recruit capillaries in human skeletal muscle. Diabetes 2000, 49:A237.

    Google Scholar 

  65. Cnop M, Havel PJ, Utzschneider KM, et al.: Relationship of adiponectin to body fat distribution, insulin sensitivity and plasma lipoproteins: evidence for independent roles of age and sex. Diabetologia 2003, 46:459–469.

    PubMed  CAS  Google Scholar 

  66. Mineo C, Yuhanna IS, Quon MJ, et al.: High density lipoprotein-induced endothelial nitric-oxide synthase activation is mediated by Akt and MAP kinases. J Biol Chem 2003, 278:9142–9149.

    Article  PubMed  CAS  Google Scholar 

  67. Chen H, Montagnani M, Funahashi T, et al.: Adiponectin stimulates production of nitric oxide in endothelial cells through AMPK-dependent phosphorylation of eNOS at Ser1179. Diabetes 2003, 53(suppl 2):A1839.

    Google Scholar 

  68. Hsueh WA, Law RE: PPARgamma and atherosclerosis: effects on cell growth and movement. Arterioscler Thromb Vasc Biol 2001, 21:1891–1895.

    PubMed  CAS  Google Scholar 

  69. Fujishima S, Ohya Y, Nakamura Y, et al.: Troglitazone, an insulin sensitizer, increases forearm blood flow in humans. Am J Hypertens 1998, 11:1134–1137.

    Article  PubMed  CAS  Google Scholar 

  70. Mather KJ, Verma S, Anderson TJ: Improved endothelial function with metformin in type 2 diabetes mellitus. J Am Coll Cardiol 2001, 37:1344–1350.

    Article  PubMed  CAS  Google Scholar 

  71. Nawano M, Anai M, Funaki M, et al.: Imidapril, an angiotensin-converting enzyme inhibitor, improves insulin sensitivity by enhancing signal transduction via insulin receptor substrate proteins and improving vascular resistance in the Zucker fatty rat. Metabolism 1999, 48:1248–1255.

    Article  PubMed  CAS  Google Scholar 

  72. Yusuf S, Sleight P, Pogue J, et al.: Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. The Heart Outcomes Prevention Evaluation Study Investigators. N Engl J Med 2000, 342:145–153.

    Article  PubMed  CAS  Google Scholar 

  73. Paniagua JA, Lopez-Miranda J, Escribano A, et al.: Cerivastatin improves insulin sensitivity and insulin secretion in earlystate obese type 2 diabetes. Diabetes 2002, 51:2596–2603.

    Article  PubMed  CAS  Google Scholar 

  74. Omori H, Nagashima H, Tsurumi Y, et al.: Direct in vivo evidence of a vascular statin: a single dose of cerivastatin rapidly increases vascular endothelial responsiveness in healthy normocholesterolaemic subjects. Br J Clin Pharmacol 2002, 54:395–399.

    Article  PubMed  CAS  Google Scholar 

  75. Laufs U, La Fata V, Plutzky J, et al.: Upregulation of endothelial nitric oxide synthase by HMG CoA reductase inhibitors. Circulation 1998, 97:1129–1135.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vincent, M.A., Montagnani, M. & Quon, M.J. Molecular and physiologic actions of insulin related to production of nitric oxide in vascular endothelium. Curr Diab Rep 3, 279–288 (2003). https://doi.org/10.1007/s11892-003-0018-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11892-003-0018-9

Keywords

Navigation