Skip to main content

Advertisement

Log in

Nuts and Cardiovascular Disease Prevention

  • Nutrition (P. Kris-Etherton, Section Editor)
  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

We review recent epidemiological and clinical studies investigating the consumption of tree nuts and peanuts and cardiovascular disease (CVD) mortality as well as CVD risk factors.

Recent Findings

A greater consumption of tree nuts and peanuts is associated with a reduced risk of CVD mortality, as well as lower CVD events. Furthermore, risk factors associated with the development of CVD such as dyslipidemia, impaired vascular function, and hypertension are improved with regular tree nut and peanut consumption through a range of mechanism associated with their nutrient-rich profiles. There is weak inconsistent evidence for an effect of nut consumption on inflammation. There is emerging evidence that consuming tree nuts reduces the incidence of non-alcoholic fatty liver disease (NAFLD) and promotes diversity of gut microbiota, which in turn may improve CVD outcomes.

Summary

Evidence for CVD prevention is strong for some varieties of tree nuts, particularly walnuts, and length of supplementation and dose are important factors for consideration with recommendations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. O’Neil CE, Fulgoni VL, 3rd, Nicklas TA: Tree nut consumption is associated with better adiposity measures and cardiovascular and metabolic syndrome health risk factors in U.S. adults: NHANES 2005–2010. Nutr J 2015, 14:64.

  2. Freisling H, Noh H, Slimani N, Chajès V, May AM, Peeters PH, et al. Nut intake and 5-year changes in body weight and obesity risk in adults: results from the EPIC-PANACEA study. Eur J Nutr. 2017;

  3. Jackson CL, Hu FB: Long-term associations of nut consumption with body weight and obesity. Am J Clin Nutr 2014, 100 Suppl 1:408s–411s.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tan SY, Dhillon J, Mattes RD: A review of the effects of nuts on appetite, food intake, metabolism, and body weight. Am J Clin Nutr 2014, 100 Suppl 1:412s–422s.

    Article  CAS  PubMed  Google Scholar 

  5. •• Kim Y, Keogh JB, Clifton PM. Benefits of nut consumption on insulin resistance and cardiovascular risk factors: multiple potential mechanisms of actions. Nutrients. 2017;9(11) Recent and comprehensive review of the mechanisms by which nuts reduce risk for CVD and type 2 diabetes.

    Article  PubMed Central  Google Scholar 

  6. Hernandez-Alonso P, Camacho-Barcia L, Bullo M, Salas-Salvado J: Nuts and dried fruits: an update of their beneficial effects on type 2 diabetes. Nutrients 2017, 9(7).

    Article  PubMed Central  Google Scholar 

  7. Ros E. Nuts and CVD. Br J Nutr. 2015;113(Suppl 2):S111–20.

    Article  CAS  PubMed  Google Scholar 

  8. USDA National Nutrient Database for Standard Reference; Release 28, Version Current: September 2015; /nea/bhnrc/ndl.

  9. Terzo S, Baldassano S, Caldara GF, Ferrantelli V, Lo Dico G, Mulè F, et al. Health benefits of pistachios consumption. Nat Prod Res. 2017:1–12.

  10. Rusu ME, Gheldiu AM, Mocan A, Vlase L, Popa DS. Anti-aging potential of tree nuts with a focus on the phytochemical composition, molecular mechanisms and thermal stability of major bioactive compounds. Food Funct. 2018;9(5):2554–75.

    Article  CAS  PubMed  Google Scholar 

  11. Stuetz W, Schlormann W, Glei M. B-vitamins, carotenoids and alpha-/gamma-tocopherol in raw and roasted nuts. Food Chem. 2017;221:222–7.

    Article  CAS  PubMed  Google Scholar 

  12. Brown RC, Tey SL, Gray AR, Chisholm A, Smith C, Fleming E, et al. Nut consumption is associated with better nutrient intakes: results from the 2008/09 New Zealand Adult Nutrition Survey. Br J Nutr. 2016;115(1):105–12.

    Article  CAS  PubMed  Google Scholar 

  13. Griel AE, Eissenstat B, Juturu V, Hsieh G, Kris-Etherton PM. Improved diet quality with peanut consumption. J Am Coll Nutr. 2004;23(6):660–8.

    Article  CAS  PubMed  Google Scholar 

  14. O’Neil CE, Nicklas TA, Fulgoni VL. Tree nut consumption is associated with better nutrient adequacy and diet quality in adults: National Health and Nutrition Examination Survey 2005-2010. Nutrients. 2015;7(1):595–607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rehm CD, Drewnowski A. Replacing American snacks with tree nuts increases consumption of key nutrients among US children and adults: results of an NHANES modeling study. Nutr J. 2017;16(1):17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Barbour JA, Stojanovski E, Moran LJ, Howe PRC, Coates AM. The addition of peanuts to habitual diets is associated with lower consumption of savory non-core snacks by men and sweet non-core snacks by women. Nutr Res. 2017;41:65–72.

    Article  CAS  PubMed  Google Scholar 

  17. Burns AM, Zitt MA, Rowe CC, Langkamp-Henken B, Mai V, Nieves C Jr, et al. Diet quality improves for parents and children when almonds are incorporated into their daily diet: a randomized, crossover study. Nutr Res. 2016;36(1):80–9.

    Article  CAS  PubMed  Google Scholar 

  18. Pearson KR, Tey SL, Gray AR, Chisholm A, Brown RC. Energy compensation and nutrient displacement following regular consumption of hazelnuts and other energy-dense snack foods in non-obese individuals. Eur J Nutr. 2017;56(3):1255–67.

    Article  CAS  PubMed  Google Scholar 

  19. Bitok E, Jaceldo-Siegl K, Rajaram S, Serra-Mir M, Roth I, Feitas-Simoes T, et al. Favourable nutrient intake and displacement with long-term walnut supplementation among elderly: results of a randomised trial. Br J Nutr. 2017;118(3):201–9.

    Article  CAS  PubMed  Google Scholar 

  20. Neale EP, Tapsell LC, Martin A, Batterham MJ, Wibisono C, Probst YC. Impact of providing walnut samples in a lifestyle intervention for weight loss: a secondary analysis of the HealthTrack trial. Food Nutr Res. 2017;61(1):1344522.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kranz S, Hill AM, Fleming JA, Hartman TJ, West SG, Kris-Etherton PM. Nutrient displacement associated with walnut supplementation in men. J Hum Nutr Diet. 2014;27(Suppl 2):247–54.

    Article  PubMed  Google Scholar 

  22. Sterling SR, Bertrand B, Judd S, Baskin ML. Nut intake among overweight and obese African-American women in the rural south. Am J Health Behav. 2016;40(5):585–93.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Choi Y, Abdelmegeed MA, Song BJ. Preventive effects of dietary walnuts on high-fat-induced hepatic fat accumulation, oxidative stress and apoptosis in mice. J Nutr Biochem. 2016;38:70–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Berryman CE, Grieger JA, West SG, Chen CYO, Blumberg JB, Rothblat GH, et al. Acute consumption of walnuts and walnut components differentially affect postprandial lipemia, endothelial function, oxidative stress, and cholesterol efflux in humans with mild hypercholesterolemia. J Nutr. 2013;143(6):788–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Berryman CE, Fleming JA, Kris-Etherton PM. Inclusion of almonds in a cholesterol-lowering diet improves plasma HDL subspecies and cholesterol efflux to serum in normal-weight individuals with elevated LDL cholesterol. J Nutr. 2017;147(8):1517–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Holligan SD, West SG, Gebauer SK, Kay CD, Kris-Etherton PM. A moderate-fat diet containing pistachios improves emerging markers of cardiometabolic syndrome in healthy adults with elevated LDL levels. Br J Nutr. 2014;112(5):744–52.

    Article  CAS  PubMed  Google Scholar 

  27. Toledo E, Wang DD, Ruiz-Canela M, Clish CB, Razquin C, Zheng Y, et al. Plasma lipidomic profiles and cardiovascular events in a randomized intervention trial with the Mediterranean diet. Am J Clin Nutr. 2017;106(4):973–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Fumeron F, Bard JM, Lecerf JM. Interindividual variability in the cholesterol-lowering effect of supplementation with plant sterols or stanols. Nutr Rev. 2017;75(2):134–45.

    Article  PubMed  Google Scholar 

  29. Calcabrini C, De Bellis R, Mancini U, Cucchiarini L, Stocchi V, Potenza L. Protective effect of Juglans regia L. walnut extract against oxidative DNA damage. Plant Foods Hum Nutr. 2017;72(2):192–7.

    Article  CAS  PubMed  Google Scholar 

  30. Gormaz JG, Valls N, Sotomayor C, Turner T, Rodrigo R. Potential role of polyphenols in the prevention of cardiovascular diseases: molecular bases. Curr Med Chem. 2016;23(2):115–28.

    Article  CAS  PubMed  Google Scholar 

  31. Huguenin GV, Oliveira GM, Moreira AS, et al. Improvement of antioxidant status after Brazil nut intake in hypertensive and dyslipidemic subjects. Nutr J. 2015;14:54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rocchetti G, Chiodelli G, Giuberti G, Lucini L. Bioaccessibility of phenolic compounds following in vitro large intestine fermentation of nuts for human consumption. Food Chem. 2018;245:633–40.

    Article  CAS  PubMed  Google Scholar 

  33. Eslamparast T, Sharafkhah M, Poustchi H, Hashemian M, Dawsey SM, Freedman ND, et al. Nut consumption and total and cause-specific mortality: results from the Golestan Cohort Study. Int J Epidemiol. 2017;46(1):75–85.

    PubMed  Google Scholar 

  34. Gopinath B, Flood VM, Burlutksy G, Mitchell P. Consumption of nuts and risk of total and cause-specific mortality over 15 years. Nutr Metab Cardiovasc Dis. 2015;25(12):1125–31.

    Article  CAS  PubMed  Google Scholar 

  35. Guasch-Ferre M, Liu X, Malik VS, et al. Nut consumption and risk of cardiovascular disease. J Am Coll Cardiol. 2017;70(20):2519–32.

    Article  CAS  PubMed  Google Scholar 

  36. • Hshieh TT, Petrone AB, Gaziano JM, Djousse L. Nut consumption and risk of mortality in the Physicians’ Health Study. Am J Clin Nutr. 2015;101(2):407–12. This paper suggests that nut intake of 1–3 servings/month is not likely to provide protection against CVD mortality when compared to at least 2–4 servings/week.

    Article  CAS  PubMed  Google Scholar 

  37. Afshin A, Micha R, Khatibzadeh S, Mozaffarian D. Consumption of nuts and legumes and risk of incident ischemic heart disease, stroke, and diabetes: a systematic review and meta-analysis. Am J Clin Nutr. 2014;100(1):278–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. •• Aune D, Keum N, Giovannucci E, et al. Nut consumption and risk of cardiovascular disease, total cancer, all-cause and cause-specific mortality: a systematic review and dose-response meta-analysis of prospective studies. BMC Med. 2016;14(1):207. This meta-analysis conducted separate analyses for tree and ground nuts. Peanuts was reported to show slightly lower relative risks for CVD events than tree nuts.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Bechthold A, Boeing H, Schwedhelm C, Hoffmann G, Knüppel S, Iqbal K, et al. Food groups and risk of coronary heart disease, stroke and heart failure: a systematic review and dose-response meta-analysis of prospective studies. Crit Rev Food Sci Nutr. 2017:1–20.

  40. Chen GC, Zhang R, Martinez-Gonzalez MA, et al. Nut consumption in relation to all-cause and cause-specific mortality: a meta-analysis 18 prospective studies. Food Funct. 2017;8(11):3893–905.

    Article  CAS  PubMed  Google Scholar 

  41. Deng C, Lu Q, Gong B, Li L, Chang L, Fu L, et al. Stroke and food groups: an overview of systematic reviews and meta-analyses. Public Health Nutr. 2018;21(4):766–76.

    Article  PubMed  Google Scholar 

  42. • Grosso G, Yang J, Marventano S, Micek A, Galvano F, Kales SN. Nut consumption on all-cause, cardiovascular, and cancer mortality risk: a systematic review and meta-analysis of epidemiologic studies. Am J Clin Nutr. 2015;101(4):783–93. This study examined the dose-response relationship between nut consumption and all-cause and CVD mortality.

    Article  CAS  PubMed  Google Scholar 

  43. Mayhew AJ, de Souza RJ, Meyre D, Anand SS, Mente A. A systematic review and meta-analysis of nut consumption and incident risk of CVD and all-cause mortality. Br J Nutr. 2016;115(2):212–25.

    Article  CAS  PubMed  Google Scholar 

  44. Schwingshackl L, Schwedhelm C, Hoffmann G, Lampousi AM, Knüppel S, Iqbal K, et al. Food groups and risk of all-cause mortality: a systematic review and meta-analysis of prospective studies. Am J Clin Nutr. 2017;105(6):1462–73.

    CAS  PubMed  Google Scholar 

  45. van den Brandt PA, Schouten LJ. Relationship of tree nut, peanut and peanut butter intake with total and cause-specific mortality: a cohort study and meta-analysis. Int J Epidemiol. 2015;44(3):1038–49.

    Article  PubMed  Google Scholar 

  46. Zhang Z, Xu G, Wei Y, Zhu W, Liu X. Nut consumption and risk of stroke. Eur J Epidemiol. 2015;30(3):189–96.

    Article  CAS  PubMed  Google Scholar 

  47. Shao C, Tang H, Zhao W, He J. Nut intake and stroke risk: a dose-response meta-analysis of prospective cohort studies. Sci Rep. 2016;6:30394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Schwingshackl L, Hoffmann G, Missbach B, Stelmach-Mardas M, Boeing H. An umbrella review of nuts intake and risk of cardiovascular disease. Curr Pharm Des. 2017;23(7):1016–27.

    Article  CAS  PubMed  Google Scholar 

  49. Del Gobbo LC, Falk MC, Feldman R, Lewis K, Mozaffarian D. Effects of tree nuts on blood lipids, apolipoproteins, and blood pressure: systematic review, meta-analysis, and dose-response of 61 controlled intervention trials. Am J Clin Nutr. 2015;102(6):1347–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mah E, Schulz JA, Kaden VN, Lawless AL, Rotor J, Mantilla LB, et al. Cashew consumption reduces total and LDL cholesterol: a randomized, crossover, controlled-feeding trial. Am J Clin Nutr. 2017;105(5):1070–8.

    Article  CAS  PubMed  Google Scholar 

  51. Jamshed H, Sultan FA, Iqbal R, Gilani AH. Dietary almonds increase serum HDL cholesterol in coronary artery disease patients in a randomized controlled trial. J Nutr. 2015;145(10):2287–92.

    Article  CAS  PubMed  Google Scholar 

  52. Mohan V, Gayathri R, Jaacks LM, Lakshmipriya N, Anjana RM, Spiegelman D, et al. Cashew nut consumption increases HDL cholesterol and reduces systolic blood pressure in Asian Indians with type 2 diabetes: a 12-week randomized controlled trial. J Nutr. 2018;148(1):63–9.

    Article  PubMed  Google Scholar 

  53. Le T, Flatt SW, Natarajan L, et al. Effects of diet composition and insulin resistance status on plasma lipid levels in a weight loss intervention in women. J Am Heart Assoc. 2016:5(1).

  54. Rock CL, Flatt SW, Barkai HS, Pakiz B, Heath DD. Walnut consumption in a weight reduction intervention: effects on body weight, biological measures, blood pressure and satiety. Nutr J. 2017;16(1):76.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Abazarfard Z, Salehi M, Keshavarzi S. The effect of almonds on anthropometric measurements and lipid profile in overweight and obese females in a weight reduction program: a randomized controlled clinical trial. J Res Med Sci. 2014;19(5):457–64.

    PubMed  PubMed Central  Google Scholar 

  56. Dattilo AM, Kris-Etherton PM. Effects of weight reduction on blood lipids and lipoproteins: a meta-analysis. Am J Clin Nutr. 1992;56(2):320–8.

    Article  CAS  PubMed  Google Scholar 

  57. Rolland C, Broom I. The effects of very-low-calorie diets on HDL: a review. Cholesterol. 2011;2011:306278.

    Article  CAS  PubMed  Google Scholar 

  58. Jenkins DJA, Kendall CWC, Lamarche B, Banach MS, Srichaikul K, Vidgen E, et al. Nuts as a replacement for carbohydrates in the diabetic diet: a reanalysis of a randomised controlled trial. Diabetologia. 2018;61:1734–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Fischer S, Schatz U, Julius U. Practical recommendations for the management of hyperlipidemia. Atheroscler Suppl. 2015;18:194–8.

    Article  CAS  PubMed  Google Scholar 

  60. •• Ruisinger JF, Gibson CA, Backes JM, et al. Statins and almonds to lower lipoproteins (the STALL study). J Clin Lipidol. 2015;9(1):58–64. This paper demonstrates that almonds can provide additional cholesterol-lowering benefits to statin therapy.

    Article  PubMed  Google Scholar 

  61. Moncada S, Higgs A. The L-arginine-nitric oxide pathway. N Engl J Med. 1993;329(27):2002–12.

    Article  CAS  PubMed  Google Scholar 

  62. Inaba Y, Chen JA, Bergmann SR. Prediction of future cardiovascular outcomes by flow-mediated vasodilatation of brachial artery: a meta-analysis. Int J Cardiovasc Imaging. 2010;26(6):631–40.

    Article  PubMed  Google Scholar 

  63. Huang Y, Zheng S, Wang T, Yang X, Luo Q, Li H. Effect of oral nut supplementation on endothelium-dependent vasodilation - a meta-analysis. Vasa. 2018:1–5.

  64. • Neale EP, Tapsell LC, Guan V, Batterham MJ. The effect of nut consumption on markers of inflammation and endothelial function: a systematic review and meta-analysis of randomised controlled trials. BMJ Open. 2017;7(11):e016863. An important meta-analysis evaluating the effects of nuts on endothelial function and biochemical markers of vascular health (inflammation).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Xiao Y, Huang W, Peng C, et al. Effect of nut consumption on vascular endothelial function: a systematic review and meta-analysis of randomized controlled trials. Clin Nutr. 2017;

  66. Fogacci F, Cicero AFG, Derosa G, Rizzo M, Veronesi M, Borghi C. Effect of pistachio on brachial artery diameter and flow-mediated dilatation: a systematic review and meta-analysis of randomized, controlled-feeding clinical studies. Crit Rev Food Sci Nutr. 2017:1–8.

  67. Liu X, Hill AM, West SG, Gabauer RM, McCrea CE, Fleming JA, et al. Acute peanut consumption alters postprandial lipids and vascular responses in healthy overweight or obese men. J Nutr. 2017;147(5):835–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Axtell AL, Gomari FA, Cooke JP: Assessing endothelial vasodilator function with the Endo-PAT 2000. J Vis Exp 2010(44).

  69. Sauder KA, McCrea CE, Ulbrecht JS, Kris-Etherton PM, West SG. Pistachio nut consumption modifies systemic hemodynamics, increases heart rate variability, and reduces ambulatory blood pressure in well-controlled type 2 diabetes: a randomized trial. Hypertension. 2014;3:e000873.

    Google Scholar 

  70. Sauder KA, McCrea CE, Ulbrecht JS, Kris-Etherton PM, West SG. Effects of pistachios on the lipid/lipoprotein profile, glycemic control, inflammation, and endothelial function in type 2 diabetes: a randomized trial. Metabolism. 2015;64(11):1521–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Huguenin GV, Moreira AS, Siant’Pierre TD, et al. Effects of dietary supplementation with Brazil nuts on microvascular endothelial function in hypertensive and dyslipidemic patients: a randomized crossover placebo-controlled trial. Microcirculation. 2015;22(8):687–99.

    Article  CAS  PubMed  Google Scholar 

  72. Kasliwal RR, Bansal M, Mehrotra R, Yeptho KP, Trehan N. Effect of pistachio nut consumption on endothelial function and arterial stiffness. Nutrition. 2015;31(5):678–85.

    Article  CAS  PubMed  Google Scholar 

  73. Chen CY, Holbrook M, Duess MA, et al. Effect of almond consumption on vascular function in patients with coronary artery disease: a randomized, controlled, cross-over trial. Nutr J. 2015;14:61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Barbour JA, Howe PR, Buckley JD, Bryan J, Coates AM. Cerebrovascular and cognitive benefits of high-oleic peanut consumption in healthy overweight middle-aged adults. Nutr Neurosci. 2016:1–8.

  75. Choudhury K, Clark J, Griffiths HR. An almond-enriched diet increases plasma alpha-tocopherol and improves vascular function but does not affect oxidative stress markers or lipid levels. Free Radic Res. 2014;48(5):599–606.

    Article  CAS  PubMed  Google Scholar 

  76. Mohammadifard N, Salehi-Abargouei A, Salas-Salvado J, Guasch-Ferre M, Humphries K, Sarrafzadegan N. The effect of tree nut, peanut, and soy nut consumption on blood pressure: a systematic review and meta-analysis of randomized controlled clinical trials. Am J Clin Nutr. 2015;101(5):966–82.

    Article  CAS  PubMed  Google Scholar 

  77. McKay DL, Eliasziw M, Chen CYO, Blumberg JB: A pecan-rich diet improves cardiometabolic risk factors in overweight and obese adults: a randomized controlled trial. Nutrients 2018, 10(3).

    Article  PubMed Central  Google Scholar 

  78. Tey SL, Robinson T, Gray AR, Chisholm AW, Brown RC. Do dry roasting, lightly salting nuts affect their cardioprotective properties and acceptability? Eur J Nutr. 2017;56(3):1025–36.

    Article  CAS  PubMed  Google Scholar 

  79. Dhillon J, Tan SY, Mattes RD. Almond consumption during energy restriction lowers truncal fat and blood pressure in compliant overweight or obese adults. J Nutr. 2016;146(12):2513–9.

    Article  CAS  PubMed  Google Scholar 

  80. Ndanuko RN, Tapsell LC, Charlton KE, Neale EP, Batterham MJ. Effect of individualised dietary advice for weight loss supplemented with walnuts on blood pressure: the HealthTrack study. Eur J Clin Nutr. 2018;72:894–903.

    Article  PubMed  Google Scholar 

  81. Yu Z, Malik VS, Keum N, Hu FB, Giovannucci EL, Stampfer MJ, et al. Associations between nut consumption and inflammatory biomarkers. Am J Clin Nutr. 2016;104(3):722–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Medina-Remon A, Casas R, Tressserra-Rimbau A, et al. Polyphenol intake from a Mediterranean diet decreases inflammatory biomarkers related to atherosclerosis: a substudy of the PREDIMED trial. Br J Clin Pharmacol. 2017;83(1):114–28.

    Article  CAS  PubMed  Google Scholar 

  83. Barbour JA, Howe PR, Buckley JD, Bryan J, Coates AM. Effect of 12 weeks high oleic peanut consumption on cardio-metabolic risk factors and body composition. Nutrients. 2015;7(9):7381–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Mazidi M, Rezaie P, Ferns GA, Gao HK. Impact of different types of tree nut, peanut, and soy nut consumption on serum C-reactive protein (CRP): a systematic review and meta-analysis of randomized controlled clinical trials. Medicine (Baltimore). 2016;95(44):e5165.

    Article  CAS  Google Scholar 

  85. Chen CM, Liu JF, Li SC, Huang CL, Hsirh AT, Weng SF, et al. Almonds ameliorate glycemic control in Chinese patients with better controlled type 2 diabetes: a randomized, crossover, controlled feeding trial. Nutr Metab (Lond). 2017;14:51.

    Article  CAS  PubMed Central  Google Scholar 

  86. Gulati S, Misra A, Pandey RM. Effect of almond supplementation on glycemia and cardiovascular risk factors in Asian Indians in North India with type 2 diabetes mellitus: a 24-week study. Metab Syndr Relat Disord. 2017;15(2):98–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Liu Y, Hwang HJ, Ryu H, Lee YS, Kim HS, Park H. The effects of daily intake timing of almond on the body composition and blood lipid profile of healthy adults. Nutr Res Pract. 2017;11(6):479–86.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Jung H, Chen CO, Blumberg JB, Kwak HK. The effect of almonds on vitamin E status and cardiovascular risk factors in Korean adults: a randomized clinical trial. Eur J Nutr. 2017;

  89. George ES, Forsyth A, Itsiopoulos C, Nicoll AJ, Ryan M, Sood S, et al. Practical dietary recommendations for the prevention and management of nonalcoholic fatty liver disease in adults. Adv Nutr. 2018;9(1):30–40.

    Article  PubMed  Google Scholar 

  90. Zelber-Sagi S, Salomone F, Mlynarsky L. The Mediterranean dietary pattern as the diet of choice for non-alcoholic fatty liver disease: evidence and plausible mechanisms. Liver Int. 2017;37(7):936–49.

    Article  CAS  PubMed  Google Scholar 

  91. Han JM, Jo AN, Lee SM, Bae HS, Jun DW, Cho YK, et al. Associations between intakes of individual nutrients or whole food groups and non-alcoholic fatty liver disease among Korean adults. J Gastroenterol Hepatol. 2014;29(6):1265–72.

    Article  CAS  PubMed  Google Scholar 

  92. •• Cueto-Galan R, Baron FJ, Valdivielso P, et al. Changes in fatty liver index after consuming a Mediterranean diet: 6-year follow-up of the PREDIMED-Malaga trial. Med Clin (Barc). 2017;148(10):435–43. Incorporating nuts into a Mediterranean diet was associated with a lower fatty liver index.

    Article  Google Scholar 

  93. Yamashita T, Kasahara K, Emoto T, Matsumoto T, Mizoguchi T, Kitano N, et al. Intestinal immunity and gut microbiota as therapeutic targets for preventing atherosclerotic cardiovascular diseases. Circ J. 2015;79(9):1882–90.

    Article  CAS  PubMed  Google Scholar 

  94. Ahmadmehrabi S, Tang WHW. Gut microbiome and its role in cardiovascular diseases. Curr Opin Cardiol. 2017;32(6):761–6.

    Article  PubMed  Google Scholar 

  95. Lamuel-Raventos RM, Onge MS. Prebiotic nut compounds and human microbiota. Crit Rev Food Sci Nutr. 2017;57(14):3154–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Bamberger C, Rossmeier A, Lechner K, et al. A walnut-enriched diet affects gut microbiome in healthy Caucasian subjects: a randomized, controlled trial. Nutrients. 2018:10(2).

    Article  PubMed Central  Google Scholar 

  97. Holscher HD, Guetterman HM, Swanson KS, An R, Matthan NR, Lichtenstein AH, et al. Walnut consumption alters the gastrointestinal microbiota, microbially derived secondary bile acids, and health markers in healthy adults: a randomized controlled trial. J Nutr. 2018;148(6):861–7.

    Article  PubMed  PubMed Central  Google Scholar 

  98. •• Holscher HD, Taylor AM, Swanson KS, Novotny JA, Baer DJ. Almond consumption and processing affects the composition of the gastrointestinal microbiota of healthy adult men and women: a randomized controlled trial. Nutrients. 2018;10(2) A RCT demonstrating that incorporating almonds promotes diversity of gut microbiota, which in turn may improve CVD outcomes.

    Article  PubMed Central  Google Scholar 

  99. Hernandez-Alonso P, Canueto D, Giardina S, et al. Effect of pistachio consumption on the modulation of urinary gut microbiota-related metabolites in prediabetic subjects. J Nutr Biochem. 2017;45:48–53.

    Article  CAS  PubMed  Google Scholar 

  100. Micha R, Shulkin ML, Penalvo JL, et al. Etiologic effects and optimal intakes of foods and nutrients for risk of cardiovascular diseases and diabetes: systematic reviews and meta-analyses from the Nutrition and Chronic Diseases Expert Group (NutriCoDE). PLoS One. 2017;12(4):e0175149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Anagnostis P, Paschou SA, Goulis DG, Athyros VG, Karagiannis A. Dietary management of dyslipidaemias. Dietary management of dyslipidaemias. Is there any evidence for cardiovascular benefit? Maturitas. 2018;108:45–52.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to AM Coates.

Ethics declarations

Conflict of Interest

Dr. Coates reports grants from the Peanut Company of Australia, the Almond Board of California, the Almond Board of Australia, and the International Nut and Dried Fruit Council, outside the submitted work. Dr. Tan reports grants from Almond Board of California, outside the submitted work. Dr. Hill reports grants from Almond Board of California, the Almond Board of Australia, and the International Nut and Dried Fruit Council, outside the submitted work.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Nutrition

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coates, A., Hill, A. & Tan, S. Nuts and Cardiovascular Disease Prevention. Curr Atheroscler Rep 20, 48 (2018). https://doi.org/10.1007/s11883-018-0749-3

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11883-018-0749-3

Keywords

Navigation