Skip to main content

Advertisement

Log in

Psammomys obesus: a Natural Diet-Controlled Model for Diabetes and Cardiovascular Diseases

  • Cardiovascular Disease and Stroke (S. Prabhakaran, Section Editor)
  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review specifically summarises and reports terrestrial mammals of the gerbil subfamily, known as Israeli sand rats or Psammomys obesus (P. obesus) as a diet-controlled, unique, polygenic rodent model for research in the areas of obesity, type 2 diabetes, and cardiovascular diseases. The animal model closely mimics phenotypic and pathophysiological resemblance with human populations.

Recent Findings

The physiological status and biochemical composition in P. obesus can be manipulated effectively by controlling its nutritional intake, making it a natural model for cardiovascular and diabetic research. Humans exhibit remarkable disparity in physiology and pathology, which are inter-dependent factors. However, variations in these factors in most animal models currently being used for cardiovascular/diabetes research are insignificant. Consequently, it is a necessity to identify and develop animal models exhibiting physiological variations mimicking human pathological conditions.

Summary

We have compiled research developments conducted with this rodent model manifesting pathophysiology, closely mimicking that in human beings, thereby enabling better translation of novel therapeutic and diagnostic discoveries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

P. obesus :

Psammomys obesus

Apo-E:

apolipoprotein-E

BMI:

body mass index

SAA:

serum amyloid A

HDL:

high-density lipoprotein

LDL:

low-density lipoprotein

Apo-B:

apolipoprotein-B

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major Importance

  1. Richard W. Longevity of mammals in captivity; from the living collections of the world. Kleine Senckenberg-Reihe. 2005;48

  2. Marquie G, Duhault J, Jacotot B. Diabetes mellitus in sand rats (Psammomys obesus): metabolic pattern during development of the diabetic syndrome. Diabetes. 1984;33(5):438–43.

    Article  PubMed  CAS  Google Scholar 

  3. Jamison RL, Roinel N, de Rouffignac C. Urinary concentrating mechanism in the desert rodent Psammomys obesus. Am J Physiol Ren Physiol. 1979;236(5):F448–F53.

    Article  CAS  Google Scholar 

  4. Schmidt-Nielsen K, Haines HB, Hackel DB. Diabetes mellitus in the sand rat induced by standard laboratory diets. Science. 1964;143(3607):689–90.

    Article  PubMed  CAS  Google Scholar 

  5. Walder, Ziv, Kalman, Whitecross, Shafrir, Zimmet, et al. Elevated hypothalamic beacon gene expression in Psammomys obesus prone to develop obesity and type 2 diabetes. Int J Obes Relat Metab Disord. 2002;26(5):605–9.

    Article  PubMed  CAS  Google Scholar 

  6. Barnett M, Collier G, Collier FM, Zimmet P, O’Dea K. A cross-sectional and short-term longitudinal characterisation of NIDDM in Psammomys obesus. Diabetologia. 1994;37(7):671–6.

    Article  PubMed  CAS  Google Scholar 

  7. Walder, Fahey, Morton, Zimmet, Collier. Characterization of obesity phenotypes in Psammomys obesus (Israeli sand rats). J Diabetes Res. 2000;1(3):177–84.

    CAS  Google Scholar 

  8. Zoltowska M, Ziv E, Delvin E, Sinnett D, Kalman R, Garofalo C, et al. Cellular aspects of intestinal lipoprotein assembly in Psammomys obesus. Diabetes. 2003;52(10):2539–45.

    Article  PubMed  CAS  Google Scholar 

  9. Zoltowska M, Ziv E, Delvin E, Lambert M, Seidman E, Levy E. Both insulin resistance and diabetes in Psammomys obesus upregulate the hepatic machinery involved in intracellular VLDL assembly. Arterioscler Thromb Vasc Biol. 2004;24(1):118–23.

    Article  PubMed  CAS  Google Scholar 

  10. Marquié G, Hadjiisky P, Arnaud O, Duhault J. Development of macroangiopathy in sand rats (Psammomys obesus), an animal model of non-insulin-dependent diabetes mellitus: effect of gliclazide. Am J Med. 1991;90(6):S55–61.

    Article  Google Scholar 

  11. Turner R, Holman R, Matthews D, Hockaday T, Peto J. Insulin deficiency and insulin resistance interaction in diabetes: estimation of their relative contribution by feedback analysis from basal plasma insulin and glucose concentrations. Metabolism. 1979;28(11):1086–96.

    Article  PubMed  CAS  Google Scholar 

  12. Walder D, Lewandowski S, Zimmet C. The effect of dietary energy restriction on body weight gain and the development of noninsulin-dependent diabetes mellitus (NIDDM) in Psammomys obesus. Obes Res. 1997;5(3):193–200.

    Article  PubMed  CAS  Google Scholar 

  13. Gouaref I, Detaille D, Wiernsperger N, Khan NA, Leverve X, Koceir E-A. The desert gerbil Psammomys obesus as a model for metformin-sensitive nutritional type 2 diabetes to protect hepatocellular metabolic damage: impact of mitochondrial redox state. PLoS One. 2017;12(2):e0172053. https://doi.org/10.1371/journal.pone.0172053.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Pouliot M-C, Després J-P, Lemieux S, Moorjani S, Bouchard C, Tremblay A, et al. Waist circumference and abdominal sagittal diameter: best simple anthropometric indexes of abdominal visceral adipose tissue accumulation and related cardiovascular risk in men and women. Am J Cardiol. 1994;73(7):460–8.

    Article  PubMed  CAS  Google Scholar 

  15. Despres J-P, Moorjani S, Lupien PJ, Tremblay A, Nadeau A, Bouchard C. Regional distribution of body fat, plasma lipoproteins, and cardiovascular disease. Arterioscler Thromb Vasc Biol. 1990;10(4):497–511.

    Article  CAS  Google Scholar 

  16. Fontana L, Eagon JC, Trujillo ME, Scherer PE, Klein S. Visceral fat adipokine secretion is associated with systemic inflammation in obese humans. Diabetes. 2007;56(4):1010–3.

    Article  PubMed  CAS  Google Scholar 

  17. Zhang W, Chuang Y-J, Jin T, Swanson R, Xiong Y, Leung L, et al. Antiangiogenic antithrombin induces global changes in the gene expression profile of endothelial cells. Cancer Res. 2006;66(10):5047–55.

    Article  PubMed  CAS  Google Scholar 

  18. Olsson U, Bondjers G, Camejo G. Fatty acids modulate the composition of extracellular matrix in cultured human arterial smooth muscle cells by altering the expression of genes for proteoglycan core proteins. Diabetes. 1999;48(3):616–22.

    Article  PubMed  CAS  Google Scholar 

  19. Bolton K, Segal D, Walder K. The small leucine-rich proteoglycan, biglycan, is highly expressed in adipose tissue of Psammomys obesus and is associated with obesity and type 2 diabetes. Biologics. 2012;6:67–72.

    PubMed  PubMed Central  CAS  Google Scholar 

  20. Ward M, Ajuwon K. Regulation of pre-adipocyte proliferation and apoptosis by the small leucine-rich proteoglycans, biglycan and decorin. Cell Prolif. 2011;44(4):343–51.

    Article  PubMed  CAS  Google Scholar 

  21. Khurana I, Kaspi A, Ziemann M, Block T, Connor T, Spolding B, et al. Hypothalamic gene expression is regulated by DNA methylation linking parental diet during pregnancy to offspring’s risk of obesity in Psammomys obesus. Pathology. 2017;49:S103–S4.

    Article  Google Scholar 

  22. Walder K, Kantham L, McMillan JS, Trevaskis J, Kerr L, de Silva A, et al. Tanis: a link between type 2 diabetes and inflammation? Diabetes. 2002;51(6):1859–66.

    Article  PubMed  CAS  Google Scholar 

  23. Pickup J, Crook M. Is type II diabetes mellitus a disease of the innate immune system? Diabetologia. 1998;41(10):1241–8.

    Article  PubMed  CAS  Google Scholar 

  24. Rifai N, Joubran R, Yu H, Asmi M, Jouma M. Inflammatory markers in men with angiographically documented coronary heart disease. Clin Chem. 1999;45(11):1967–73.

    PubMed  CAS  Google Scholar 

  25. Zimmermann J, Herrlinger S, Pruy A, Metzger T, Wanner C. Inflammation enhances cardiovascular risk and mortality in hemodialysis patients. Kidney Int. 1999;55(2):648–58.

    Article  PubMed  CAS  Google Scholar 

  26. Honda H, Qureshi AR, Heimbürger O, Barany P, Wang K, Pecoits-Filho R, et al. Serum albumin, C-reactive protein, interleukin 6, and fetuin a as predictors of malnutrition, cardiovascular disease, and mortality in patients with ESRD. Am J Kidney Dis. 2006;47(1):139–48.

    Article  PubMed  CAS  Google Scholar 

  27. Fyfe AI, Rothenberg LS, DeBeer FC, Cantor RM, Rotter JI, Lusis AJ. Association between serum amyloid a proteins and coronary artery disease: evidence from two distinct arteriosclerotic processes. Circulation. 1997;96(9):2914–9. https://doi.org/10.1161/01.cir.96.9.2914.

    Article  PubMed  CAS  Google Scholar 

  28. Bolton K, Segal D, McMillan J, Sanigorski A, Collier G, Walder K. Identification of secreted proteins associated with obesity and type 2 diabetes in Psammomys obesus. Int J Obes. 2009;33(10):1153–65.

    Article  CAS  Google Scholar 

  29. Shimazaki M, Nakamura K, Kii I, Kashima T, Amizuka N, Li M, et al. Periostin is essential for cardiac healing after acute myocardial infarction. J Exp Med. 2008;205(2):295–303.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Zhao S, Wu H, Xia W, Chen X, Zhu S, Zhang S, et al. Periostin expression is upregulated and associated with myocardial fibrosis in human failing hearts. J Cardiol. 2014;63(5):373–8.

    Article  PubMed  Google Scholar 

  31. Cheng C-W, Wang C-H, Lee J-F, Kuo L-T, Cherng W-J. Levels of blood periostin decrease after acute myocardial infarction and are negatively associated with ventricular function after 3 months. J Investig Med. 2012;60(2):523–8.

    Article  PubMed  CAS  Google Scholar 

  32. Oka T, Xu J, Kaiser RA, Melendez J, Hambleton M, Sargent MA, et al. Genetic manipulation of periostin expression reveals a role in cardiac hypertrophy and ventricular remodeling. Circ Res. 2007;101(3):313–21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Schwanekamp JA, Lorts A, Vagnozzi RJ, Vanhoutte D, Molkentin JD. Deletion of periostin protects against atherosclerosis in mice by altering inflammation and extracellular matrix remodeling. Arterioscler Thromb Vasc Biol 2015. ATVBAHA. 115.306397.

  34. Hixson JE, Shimmin LC, Montasser ME, Kim D-K, Zhong Y, Ibarguen H, et al. Common variants in the periostin gene influence development of atherosclerosis in young persons. Arterioscler Thromb Vasc Biol. 2011;31(7):1661–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Gruber H, Norris R, Kern M, Hoelscher G, Ingram J, Zinchenko N, et al. Periostin is expressed by cells of the human and sand rat intervertebral discs. Biotech Histochem. 2011;86(3):199–206.

    Article  PubMed  CAS  Google Scholar 

  36. Ragino YI, Kashtanova EV, Chernjavski AM, Volkov AM, Polonskaya YV, Tsimbal SY, et al. Blood level of osteonectin in stenosing atherosclerosis and calcinosis of coronary arteries. Bull Exp Biol Med. 2011;151(3):370–3. https://doi.org/10.1007/s10517-011-1333-9.

    Article  PubMed  CAS  Google Scholar 

  37. Bini A, Mann KG, Kudryk BJ, Schoen FJ. Noncollagenous bone matrix proteins, calcification, and thrombosis in carotid artery atherosclerosis. Arterioscler Thromb Vasc Biol. 1999;19(8):1852–61.

    Article  PubMed  CAS  Google Scholar 

  38. Griffin E, Re A, Hamel N, Fu C, Bush H, McCaffrey T, et al. A link between diabetes and atherosclerosis: glucose regulates expression of CD36 at the level of translation. Nat Med. 2001;7(7):840–6.

    Article  PubMed  CAS  Google Scholar 

  39. Katakami N, Yamasaki Y, Hayaishi-Okano R, Ohtoshi K, Kaneto H, Matsuhisa M, et al. Metformin or gliclazide, rather than glibenclamide, attenuate progression of carotid intima-media thickness in subjects with type 2 diabetes. Diabetologia. 2004;47(11):1906–13.

    Article  PubMed  CAS  Google Scholar 

  40. Jennings P, Scott N, Saniabadi A, Belch J. Effects of gliclazide on platelet reactivity and free radicals in type II diabetic patients: clinical assessment. Metabolism. 1992;41(5):36–9.

    Article  PubMed  CAS  Google Scholar 

  41. Yan T, Chen Y-J, Sang JQ. Thromboxane/prostacyclin balance in type II diabetes: gliclazide effects. Metabolism. 1992;41(5:33–5.

    Google Scholar 

  42. Renier G, Desfaits A-C, Serri O. Gliclazide decreases low-density lipoprotein oxidation and monocyte adhesion to the endothelium. Metabolism. 2000;49(2):17–22.

    Article  PubMed  CAS  Google Scholar 

  43. Renier G, Desfaits A-C, Serri O. Effect of gliclazide on monocyte–endothelium interactions in diabetes. J Diabetes Complicat. 2000;14(4):215–23.

    Article  PubMed  CAS  Google Scholar 

  44. Kawamori R, Yamasaki Y, Matsushima H, Nishizawa H, Nao K, Hougaku H, et al. Prevalence of carotid atherosclerosis in diabetic patients ultrasound high-resolution B-mode imaging on carotid arteries. Diabetes Care. 1992;15(10):1290–4. https://doi.org/10.2337/diacare.15.10.1290.

    Article  PubMed  CAS  Google Scholar 

  45. Mikat E, Weiss J, Schanberg S, Bartolome J, Palmos L, Hackel D, et al. Development of atherosclerotic-like lesions in the sand rat (Psammomys obesus). Coron Artery Dis. 1990;1(4):469–76.

    Article  Google Scholar 

  46. Kalderon B, Adler JH, Levy E, Gutman A. Lipogenesis in the sand rat (Psammomys obesus). Am J Physiol Endocrinol Metab. 1983;244(5):E480–E6.

    Article  CAS  Google Scholar 

  47. Ginsberg HN. Lipoprotein physiology in nondiabetic and diabetic states: relationship to atherogenesis. Diabetes Care. 1991;14(9):839–55.

    Article  PubMed  CAS  Google Scholar 

  48. Carmena R, Duriez P, Fruchart J-C. Atherogenic lipoprotein particles in atherosclerosis. Circulation. 2004;109(23 suppl 1):III–2-III-7. https://doi.org/10.1161/01.cir.0000131511.50734.44.

    Article  Google Scholar 

  49. Zoltowska M, Ziv E, Delvin E, Stan S, Bar-On H, Kalman R, et al. Circulating lipoproteins and hepatic sterol metabolism in Psammomys obesus prone to obesity, hyperglycemia and hyperinsulinemia. Atherosclerosis. 2001;157(1):85–96.

    Article  PubMed  CAS  Google Scholar 

  50. • Ousmaal MEF, Martínez MC, Andriantsitohaina R, Chabane K, Gaceb A, Mameri S, et al. Increased monocyte/neutrophil and pro-coagulant microparticle levels and overexpression of aortic endothelial caveolin-1β in dyslipidemic sand rat, Psammomys obesus. J Diabetes Complicat. 2016;30(1):21–9. https://doi.org/10.1016/j.jdiacomp.2015.09.017. The article indicates that high-energy diet exerts deleterious effects on the vascular system by increasing the monocyte/neutrophil and pro-coagulant microparticle levels, which may lead to cav-1β protein overexpression in dyslipidaemic P . obesus .

    Article  Google Scholar 

  51. Bauer PM, Yu J, Chen Y, Hickey R, Bernatchez PN, Looft-Wilson R, et al. Endothelial-specific expression of caveolin-1 impairs microvascular permeability and angiogenesis. Proc Natl Acad Sci U S A. 2005;102(1):204–9. https://doi.org/10.1073/pnas.0406092102.

    Article  PubMed  CAS  Google Scholar 

  52. Capodici C, Hanft S, Feoktistov M, Pillinger MH. Phosphatidylinositol 3-kinase mediates chemoattractant-stimulated, CD11b/CD18-dependent cell-cell adhesion of human neutrophils: evidence for an ERK-independent pathway. J Immunol. 1998;160(4):1901–9.

    PubMed  CAS  Google Scholar 

  53. Weber C, Erl W, Weber KSC, Weber PC. HMG-CoA reductase inhibitors decrease CD11b expression and CD11b-dependent adhesion of monocytes to endothelium and reduce increased adhesiveness of monocytes isolated from patients with hypercholesterolemia. J Am Coll Cardiol. 1997;30(5):1212–7. https://doi.org/10.1016/s0735-1097(97)00324-0.

    Article  PubMed  CAS  Google Scholar 

  54. Zoltowska M, Delvin E, Ziv E, Peretti N, Chartré M, Levy E. Impact of in vivo glycation of LDL on platelet aggregation and monocyte chemotaxis in diabetic Psammomys obesus. Lipids. 2004;39(1):81–5. https://doi.org/10.1007/s11745-004-1205-7.

    Article  PubMed  CAS  Google Scholar 

  55. Bouguerra SA, Benazzoug Y, Bekkhoucha F, Bourdillon MC. Effect of high glucose concentration on collagen synthesis and cholesterol level in the phenotypic modulation of aortic cultured smooth muscle cells of sand rat (Psammomys obesus). Exp Diabesity Res. 2004;5(3):227–35. https://doi.org/10.1080/15438600490489793.

    Article  PubMed Central  CAS  Google Scholar 

  56. Ahmed N. Glycation and diabetic complications. J Pak Med Assoc. 1991;41(7):171–4.

    PubMed  CAS  Google Scholar 

  57. Lyons TJ. Glycation and oxidation: a role in the pathogenesis of atherosclerosis. Am J Cardiol. 1993;71(6):B26–31.

    Article  Google Scholar 

  58. Chen W-Y, Cheng B-C, Jiang M-J, Hsieh M-Y, Chang M-S. IL-20 is expressed in atherosclerosis plaques and promotes atherosclerosis in apolipoprotein E–deficient mice. Arterioscler Thromb Vasc Biol. 2006;26(9):2090–5. https://doi.org/10.1161/01.ATV.0000232502.88144.6f.

    Article  PubMed  CAS  Google Scholar 

  59. Hsieh MY, Chen WY, Jiang MJ, Cheng BC, Huang TY, Chang MS. Interleukin-20 promotes angiogenesis in a direct and indirect manner. Genes Immun. 2006;7(3):234–42.

    Article  PubMed  CAS  Google Scholar 

  60. • Cucak H, Høj Thomsen L, Rosendahl A. IL-20 contributes to low grade inflammation and weight gain in the Psammomys obesus. Int Immunopharmacol. 2017;45(Supplement C):53–67. https://doi.org/10.1016/j.intimp.2017.01.031. The article determines the importance of inflammation in obesity and diabetes, in a normal non-genetically modified species, an intervention study with neutralising anti-IL-20 antibodies conducted in the spontaneous Psammomys obesus exhibiting type 2 diabetes.

    Article  PubMed  CAS  Google Scholar 

  61. Sahraoui A, Dewachter C, de Medina G, Naeije R, Bouguerra SA, Dewachter L. Myocardial structural and biological anomalies induced by high fat diet in Psammomys obesus gerbils. PLoS One. 2016;11(2):e0148117.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Aroune D, Libdiri F, Leboucher S, Maouche B, Marco S, El-Aoufi S. Changes in the NFκB and E-cadherin expression are associated to diabetic nephropathy in Psammomys obesus. Saudi J Biol Sci. 2017;24(4):843–50.

    Article  PubMed  CAS  Google Scholar 

  63. Kanwar YS, Sun L, Xie P, F-y L, Chen S. A glimpse of various pathogenetic mechanisms of diabetic nephropathy. Annu Rev Pathol. 2011;6:395–423.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Wang Q, Usinger W, Nichols B, Gray J, Xu L, Seeley TW, et al. Cooperative interaction of CTGF and TGF-β in animal models of fibrotic disease. Fibrogenesis Tissue Repair. 2011;4(1):4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Lau X, Zhang Y, Kelly DJ, Stapleton DI. Attenuation of Armanni–Ebstein lesions in a rat model of diabetes by a new anti-fibrotic, anti-inflammatory agent, FT011. Diabetologia. 2013;56(3):675–9.

    Article  PubMed  CAS  Google Scholar 

  66. Remuzzi A, Fassi A, Sangalli F, Malanchini B, Mohamed EI, Bertani T, et al. Prevention of renal injury in diabetic MWF rats by angiotensin II antagonism. Nephron Exp Nephrol. 1998;6(1):28–38.

    Article  CAS  Google Scholar 

  67. Bennani-Kabchi N, Kehel L, El Bouayadi F, Fdhil H, Amarti A, Saidi A, et al. New model of atherosclerosis in insulin resistant sand rats: hypercholesterolemia combined with D2 vitamin. Atherosclerosis. 2000;150(1):55–61.

    Article  PubMed  CAS  Google Scholar 

  68. Weinstein DB, Heider JG. Antiatherogenic properties of calcium antagonists. Am J Cardiol. 1987;59(3):B163–B72.

    Article  Google Scholar 

  69. Henry P, Bentley K. Suppression of atherogenesis in cholesterol-fed rabbit treated with nifedipine. J Clin Investig. 1981;68(5):1366–9.

    Article  PubMed  CAS  Google Scholar 

  70. •• Chaudhary R, Roy K, Kanwar RK, Walder K, Kanwar JR. Engineered atherosclerosis-specific zinc ferrite nanocomplex-based MRI contrast agents. Journal of Nanobiotechnology. 2016;14(1):6. https://jnanobiotechnology.biomedcentral.com/articles/10.1186/s12951-016-0157-1. An exclusive article using Psammomys obesus animal model for validation of novel MRI contrast agent for atherosclerotic plaque diagnosis.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

RC and CEH are supported by the National Health and Medical Research Council of Australia (NHMRC) under APP1120129. CEH is supported by the Juvenile Diabetes Research Foundation (JDRF grant) under 3-SRA-2015-119-Q-R. Deakin University Post-graduate Research Scholarship has also funded the work under the supervision of JK and KW. The work was supported by the Australian Centre for Blood Diseases, Monash University, and the School of Medicine, Deakin University.

Author information

Authors and Affiliations

Authors

Contributions

RC wrote the initial draft of the manuscript. KW, CEH, and JK revised the manuscript and provided critical input. All authors reviewed and approved the final version of the paper.

Corresponding author

Correspondence to Rajneesh Chaudhary.

Ethics declarations

Conflict of Interest

Rajneesh Chaudhary, Ken R. Walder, Christoph E. Hagemeyer, and Jagat R. Kanwar declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Cardiovascular Disease and Stroke

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaudhary, R., Walder, K.R., Hagemeyer, C.E. et al. Psammomys obesus: a Natural Diet-Controlled Model for Diabetes and Cardiovascular Diseases. Curr Atheroscler Rep 20, 46 (2018). https://doi.org/10.1007/s11883-018-0746-6

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11883-018-0746-6

Keywords

Navigation