Skip to main content
Log in

New Bayesian-Optimization-Based Design of High-Strength 7xxx-Series Alloys from Recycled Aluminum

  • Aluminum: New Alloys and Heat Treatment
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Over the next decade, a large number of airplanes will reach the end of their useful life, providing an obvious source of valuable used metals such as 7075 alloy. In this project, old 7075 was remelted and alloyed with pure alloying elements to create new 7xxx-series alloys with enhanced performance. Aerospace alloys are extremely complex with multiple alloying elements and numerous processing steps, often making their optimization labor intensive and costly. In the current study, Bayesian optimization was used as the basis for adaptive experimental optimization to explore and optimize this multivariable problem. Novel Al alloys, based on the 7075 alloy, were proposed and their heat treatment processes optimized. Exhibiting maximum yield strength and ultimate tensile strength of 729 MPa and 761 MPa, respectively, the mechanical properties of the newly designed alloys are comparable to or exceed those of the current generation of high-strength 7xxx-series Al alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. P. Rambabu, N.E. Prasad, V. Kutumbarao, and R. Wanhill, Aerospace Materials and Material Technologies (Berlin: Springer, 2017), p. 29.

    Book  Google Scholar 

  2. E. Asmatulu, M. Overcash, and J. Twomey, J. Ind. Eng. 2013, 1 (2013).

    Google Scholar 

  3. J.A. Muñóz Lerma, I.-H. Jung, and M. Brochu, Metall. Mater. Trans. B 47, 1976 (2016).

    Article  Google Scholar 

  4. S.K. Das and J.G. Kaufman, Adv. Mater. Process. 166, 34 (2008).

    Google Scholar 

  5. F. Grosselle, G. Timelli, and F. Bonollo, Mater. Sci. Eng., A 527, 3536 (2010).

    Article  Google Scholar 

  6. S. Dey, N. Sultana, M.S. Kaiser, P. Dey, and S. Datta, Mater. Des. 92, 522 (2016).

    Article  Google Scholar 

  7. D. Huang, T.T. Allen, W.I. Notz, and N. Zeng, J. Glob. Optim. 34, 441 (2006).

    Article  Google Scholar 

  8. J. Snoek, H. Larochelle, and R.P. Adams, Adv. Neural. Inf. Process. Syst. 4, 2951 (2012).

    Google Scholar 

  9. P.V. Balachandran, D. Xue, J. Theiler, J. Hogden, and T. Lookman, Sci. Rep. 6, 19660 (2016).

    Article  Google Scholar 

  10. S. Rana, C. Li, S. Gupta, V. Nguyen, and S. Venkatesh, in Proceedings of the 34th International Conference on Machine Learning, vol. 70 (2017), p. 2883.

  11. W. Guo, et al., Mater. Sci. Eng., A 634, 167 (2015).

    Article  Google Scholar 

  12. M.F. Ibrahim, A.M. Samuel, and F.H. Samuel, Mater. Des. 57, 342 (2014).

    Article  Google Scholar 

  13. X.-M. Li and M. Starink, Mater. Sci. Technol. 17, 1324 (2001).

    Article  Google Scholar 

  14. O.N. Senkov, R.B. Bhat, S.V. Senkova, and J.D. Schloz, Metall. Mater. Trans. A 36, 2115 (2005).

    Article  Google Scholar 

  15. T. Dorin, M. Ramajayam, J. Lamb, and T.J. Langan, Mater. Sci. Eng., A 707, 58 (2017).

    Article  Google Scholar 

  16. T. Dorin, M. Ramajayam, A. Vahid, and T.J. Langan, Fundamentals of Aluminium Metallurgy, ed. R. Lumley (Amsterdam: Elsevier, 2018), p. 439.

    Chapter  Google Scholar 

  17. Y.-D. He, X.-M. Zhang, and J.-H. You, Trans. Nonferrous Met. Soc. China 16, 1228 (2006).

    Article  Google Scholar 

  18. R. Marceau and T. Dorin, Fundamentals of Aluminium Metallurgy, ed. R. Lumley (Amsterdam: Elsevier, 2018), p. 1.

    Google Scholar 

  19. M.F. Ibrahim, G.H. Garza-Elizondo, A.M. Samuel, and F.H. Samuel, Int. J. Met. 10, 264 (2016).

    Google Scholar 

  20. G. Koch and D. Kolijn, J. Heat. Treat. 1, 3 (1979).

    Article  Google Scholar 

  21. S. Senkova, R. Bhat, and O. Senkov, JOM 56, 331 (2004).

    Google Scholar 

  22. Online Materials Information Resource, (MatWeb, Material Property Data, 2017). http://www.matweb.com/.

  23. ASM International Handbook, 2nd ed., vol. 2 (USA, ASM International Handbook Committee, 1990), pp. 17-147.

  24. J.R. Davis, ASM Specialty Handbook: Aluminum and Aluminum Alloys, 1st ed. (Matals Park: ASM International, 1994), pp. 579–730.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Vahid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vahid, A., Rana, S., Gupta, S. et al. New Bayesian-Optimization-Based Design of High-Strength 7xxx-Series Alloys from Recycled Aluminum. JOM 70, 2704–2709 (2018). https://doi.org/10.1007/s11837-018-2984-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-018-2984-z

Navigation