Skip to main content
Log in

Multibody Approach to Musculoskeletal and Joint Loading

  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Joint and muscular loads are the major internal loads in the human body. Knowing or being able to estimate those loads is of importance in multiple instances, such as in designing implants, predicting surgical outcomes, in estimating occupational loading, and in designing interventions. Unfortunately, the direct measurement of the body’s internal forces is difficult, rather invasive, and requires surgical operations. Therefore, the need is growing for computational tools for muscular, bone and joint loading estimation. This article will present a review of the computational methods that can be utilized for musculoskeletal and joint system loading estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32

Similar content being viewed by others

References

  1. American College of Sports Medicine (2009) Progression models in resistance training for healthy adults. Med Sci Sports Exerc 41(3):687–708

    Google Scholar 

  2. McKibbin B (1978) The biology of fracture healing in long bones. J Bone Joint Surg Br 60–B(2):150–162

    Google Scholar 

  3. Lanyon LE (1987) Functional strain in bone tissue as an objective, and controlling stimulus for adaptive bone remodelling. J Biomech 20:1083–1093

    Google Scholar 

  4. Turner CH (1998) Three rules for bone adaptation to mechanical stimuli. Bone 23:399–407

    Google Scholar 

  5. Wren TA, Beaupre GS, Carter DR (2000) Tendon and ligament adaptation to exercise, immobilization, and remobilization. J Rehabil Res Dev 37(2):217–224

    Google Scholar 

  6. Mackey AL, Heinemeier KM, Anneli Koskinen SO, Kjaer M (2008) Dynamic adaptation of tendon and muscle connective tissue to mechanical loading. Connect Tissue Res 49(3–4):165– 168

  7. Arampatzis A, Karamanidis K, Mademli L, Albracht K (2009) Plasticity of the human tendon to short- and long-term mechanical loading. Exerc Sport Sci Rev 37(2):66–72

    Google Scholar 

  8. Eckstein F, Hudelmaier M, Putz R (2006) The effects of exercise on human articular cartilage. J Anat 208(4):491–512

    Google Scholar 

  9. Schoenfeld B (2010) The mechanisms of muscle hypertrophy and their application to resistance training. J Strength 24(10):2857–2872

    Google Scholar 

  10. Gallo RA, Plakke M, Silvis ML (2012) Common leg injuries of long-distance runners. Sports Health 4(6):485–495

    Google Scholar 

  11. Malliaras P, Barton CJ, Reeves ND, Langberg H (2013) Achilles and patellar tendinopathy loading programmes. Sports Med 43(4):267–286

    Google Scholar 

  12. Papavasiliou K, Kenanidis E, Potoupnis M, Kapetanou A, Sayegh F (2011) Participation in athletic activities may be associated with later development of hip and knee osteoarthritis. Phys Sportsmed 39(4):51–59

    Google Scholar 

  13. Kuijt M-TK, Inklaar H, Gouttebarge V, Frings-Dresen MHW (2012) Knee and ankle osteoarthritis in former elite soccer players: a systematic review of the recent literature. J Sci Med Sport 15(6):480–487

    Google Scholar 

  14. Sievänen H (2010) Immobilization and bone structure in humans. Arch Biochem Biophys 503(1):146–152

    Google Scholar 

  15. Riggs BL, Melton LJI (1995) Osteoporosis. Etiology, diagnosis and treatment, 2nd edn. Lippincott-Raven Publishers, Hagerstown

    Google Scholar 

  16. Kannus P, Niemi S, Parkkari J, Palvanen M, Heinonen A, Sievänen H, Järvinen T, Khan K, Järvinen M (2002) Why is the age-standardized incidence of low-trauma fractures rising in many elderly populations? Journl Bone Miner Res 17:1363–1367

    Google Scholar 

  17. Komi PV, Fukashiro S, Järvinen M (1992) Biomechanical loading of Achilles tendon during normal locomotion. Clin Sports Med 11(3):521–531

    Google Scholar 

  18. Finni T, Komi PV, Lukkariniemi J (1998) Achilles tendon loading during walking: application of a novel optic fiber technique. Eur J Appl Physiol 77(3):289–291

    Google Scholar 

  19. Fleming BC, Beynnon BD (2004) In vivo measurement of ligament/tendon strains and forces: a review. Ann Biomed Eng 32(3):28–318

    Google Scholar 

  20. Biewener AA, Konieczynski DD, Baudinette RV (1998) In vivo muscle force-length behavior during steady-speed hopping in tammar wallabies. J Exp Biol 201(11):1681–1694

  21. Griffiths RI (1987) Ultrasound transit time gives direct measurement of muscle fibre length in vivo. J Neurosci Methods 21(2–4):159–165

    Google Scholar 

  22. Solomonow M, Baratta R, Shoji H, D’Ambrosia R (1990) The EMG-force relationships of skeletal muscle; dependence on contraction rate, and motor units control strategy. Electromyogr Clin Neurophysiol 30(3):141–152

    Google Scholar 

  23. Häkkinen K, Komi P (1983) Electromyographic changes during strength training and detraining. Med Sci Sports Exerc 15(6):455–460

    Google Scholar 

  24. Bergmann G, Graichen F, Rohlmann A (1993) Hip joint loading during walking and running, measured in two patients. J Biomech 26(8):969–990

    Google Scholar 

  25. Kutzner I, Heinlein B, Graichen F, Bender A, Rohlmann A, Halder A, Beier A, Bergmann G (2010) Loading of the knee joint during activities of daily living measured in vivo in five subjects. J Biomech 43(11):2164–2173

    Google Scholar 

  26. Liskova M, Hert J (1971) Reaction of bone to mechanical stimuli. Folia Morphol 19:301–317

    Google Scholar 

  27. Lanyon LE, Rubin CT (1984) Static vs dynamic loads as an influence on bone remodelling. J Biomech 17:897–905

    Google Scholar 

  28. Turner CH, Robling AG (2003) Designing exercise regimens to increase bone strength. Exerc Sport Sci Rev 31:45–50

    Google Scholar 

  29. Whalen RT, Carter DR, Steele CR (1988) Influence of physical activity on the regulation of bone density. J Biomech 21:825–837

  30. Heinonen A, Kannus P, Sievanen H, nen H, Oja P, Pasanen M, Rinne M, Uusi-Rasi K, Vuori I, (1996) Randomised controlled trial of effect of high-impact exercise on selected risk factors for osteoporotic fractures. Lancet 348:1343–1347

  31. Vainionpää A, Korpelainen R, Leppäluoto J, Jämsä T (2005) Effects of high-impact exercise on bone mineral density: a randomized controlled trial in premenopausal women. Osteoporos Int 16:191–197

    Google Scholar 

  32. Sverdlova NS, Witzela U (2010) Principles of determination and verification of muscle forces in the human musculoskeletal system: muscle forces to minimise bending stress. J Biomech 43:387–396

    Google Scholar 

  33. Forwood MR, Turner CH (1995) Skeletal adaptations to mechanical usage: results from tibial loading studies in rats. Bone 17:197S–205S

    Google Scholar 

  34. Rubin CT, Lanyon LE (1984) Regulation of bone formation by applied dynamic loads. J Bone Joint Surg Am. 66:397–402

    Google Scholar 

  35. Hadjidakis DJ, Androulakis II (2006) Bone remodeling. Ann N Y Acad Sci 1092:385–396

    Google Scholar 

  36. Stengel SV (2005) Power training is more effective than strength training for maintaining bone mineral density in postmenopausal women. J Appl Physiol 99(1):181–188

    Google Scholar 

  37. von Stengel S, Kemmler W, Kalender WA, Engelke K, Lauber D (2007) Differential effects of strength versus power training on bone mineral density in postmenopausal women: a 2-year longitudinal study. Br J Sports Med 41(10):649–655

    Google Scholar 

  38. Turner CH, Pavalko FM (1998) Mechanotransduction and functional response of the skeleton to physical stress: the mechanisms and mechanics of bone adaptation. J Orthop Sci Off J Jpn Orthop Assoc 3(6):346–355

    Google Scholar 

  39. Perttunen JO, Kyröläinen H, Komi PV, Heinonen A (2000) Biomechanical loading in the triple jump. J Sports Sci 18:363–370

    Google Scholar 

  40. Ishikawa M, Niemelä E, Komi PV (2005) Interaction between fascicle and tendinous tissues in short-contact stretch-shortening cycle exercise with varying eccentric intensities. J Appl Physiol 99:217–223

    Google Scholar 

  41. Vainionpää A, Korpelainen R, Vihriälä E, Rinta-Paavola A, Leppäluoto J, Jämsä T (2006) Intensity of exercise is associated with bone density change in premenopausal women. Osteoporos Int 17:455–463

    Google Scholar 

  42. Vainionpää A, Korpelainen R, Sievänen H, Vihriälä E, Leppäluoto J, Jämsä T (2007) Effect of impact exercise and its intensity on bone geometry at weight-bearing tibia and femur. Bone 40:604–611

    Google Scholar 

  43. Jämsä T, Vainionpää A, Korpelainen R, Vihriälä E, Leppäluoto J (2006) Effect of daily physical activity on proximal femur. Clin Biomech 21:1–7

    Google Scholar 

  44. Järvinen TL, Kannus P, Sievänen H, Jolma P, Heinonen A, Järvinen M (1998) Randomized controlled study of effects of sudden impact loading on rat femur. J Bone Miner Res 13:1475– 1482

  45. Umemura Y, Sogo N, Honda A (2002) Effects of intervals between jumps or bouts on osteogenic response to loading. J Appl Physiol 93:1345–1348

    Google Scholar 

  46. Nikander R, Kannus P, Rantalainen T, Uusi-Rasi K, Heinonen A, Sievanen H (2009) Cross-sectional geometry of weight-bearing tibia in female athletes subjected to different exercise loadings. Osteoporos Int 21:1687–1694

    Google Scholar 

  47. Kłodowski A, Rantalainen T, Mikkola A, Heinonen A, Sievänen H (2011) Flexible multibody approach in forward dynamic simulation of locomotive strains in human skeleton with flexible lower body bones. Multibody Syst Dyn 25:395–409

    MATH  Google Scholar 

  48. Klodowski A, Rantalainen T, Mikkola A, Dastidar P, Sievanen H (2009) A dynamic simulation of a human gait using the hybrid muscle model and a qCT-based flexible tibia. In: ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference Vol 4: 7th International Conference on Multibody Systems, Nonlinear Dynamics, and Control, Parts A, B and C. San Diego, California, USA, 30 Aug–2 Sept 2009, pp 1565–1574. doi:10.1115/DETC200986831

  49. Lieber RL, Bodine-Fowler SC (1993) Skeletal muscle mechanics: implications for rehabilitation. Phys Ther 73(12):844–856

    Google Scholar 

  50. Frost HM (2001) From Wolff’s law to the Utah paradigm: insights about bone physiology and its clinical applications. Anat Rec 262(4):398–419

    Google Scholar 

  51. Huxley AF (1974) Muscular contraction. J Physiol 243(1):1–43

    Google Scholar 

  52. Holmes KC, Geeves MA (2000) The structural basis of muscle contraction. Philos Trans R Soc Lond B 355(1396):419– 431

  53. Morgan DL (1990) New insights into the behavior of muscle during active lengthening. Biophys J 57(2):209–221

    Google Scholar 

  54. Sanger JW, Wang J, Fan Y, White J, Sanger JM (2010) Assembly and dynamics of myofibrils. BioMed Res Int 2010. doi:10.1155/2010/858606

  55. Pease DC, Baker RF (1949) The fine structure of mammalian skeletal muscle. Am J Anat 84(2):175–200

    Google Scholar 

  56. Purslow PP (2010) Muscle fascia and force transmission. J Bodyw Mov Ther 14(4):411–417

    Google Scholar 

  57. Huijing PA (1999) Muscle as a collagen fiber reinforced composite: a review of force transmission in muscle and whole limb. J Biomech 32(4):329–345

    Google Scholar 

  58. Buchthal F, Schmalbruch H (1980) Motor unit of mammalian muscle. Physiol Rev 60(1):90–142

    Google Scholar 

  59. Smith LR, Meyer G, Lieber RL (2013) Systems analysis of biological networks in skeletal muscle function. Wiley Interdiscip Rev Syst Biol Med 5(1):55–71

    Google Scholar 

  60. Stephenson DG, Lamb GD, Stephenson GMM (1998) Events of the excitation-contraction-relaxation (E-C-R) cycle in fast- and slow-twitch mammalian muscle fibres relevant to muscle fatigue. Acta Physiol Scand 162(3):229–245

    Google Scholar 

  61. Lindstrom LH, Magnusson RI (1977) Interpretation of myoelectric power spectra: a model and its applications. Proc IEEE 65(5):653–662

    Google Scholar 

  62. Merletti R, Holobar A, Farina D (2008) Analysis of motor units with high-density surface electromyography. J Electromyogr Kinesiol 18(6):879–890

    Google Scholar 

  63. Piitulainen H, Rantalainen T, Linnamo V, Komi P, Avela J (2009) Innervation zone shift at different levels of isometric contraction in the biceps brachii muscle. J Electromyogr Kinesiol 19(4):667–675

  64. Rantalainen T, Kłodowski A, Piitulainen H (2012) Effect of innervation zones in estimating biceps brachii force-EMG relationship during isometric contraction. J Electromyogr Kinesiol 22(1):80–87

    Google Scholar 

  65. Disselhorst-Klug C, Schmitz-Rode T, Rau G (2009) Surface electromyography and muscle force: limits in sEMG-force relationship and new approaches for applications. Clin Biomech 24(3):225–235

    Google Scholar 

  66. Cavanagh PR, Komi PV (1979) Electromechanical delay in human skeletal muscle under concentric and eccentric contractions. Eur J Appl Physiol 42(3):159–163

    Google Scholar 

  67. Norman RW, Komi PV (1979) Electromechanical delay in skeletal muscle under normal movement conditions. Acta Physiol Scand 106(3):241–248

    Google Scholar 

  68. Staudenmann D, Roeleveld K, Stegeman DF, van Dieën JH (2010) Methodological aspects of SEMG recordings for force estimation–a tutorial and review. J Electromyogr Kinesiol 20(3):375–387

    Google Scholar 

  69. Ebashi S (1980) The croonian lecture, 1979: regulation of muscle contraction. Proc R Soc Lond B 207(1168):259–286

    Google Scholar 

  70. Lehman SL (1988) Modification of muscle models to simulate fatigue. In: Engineering in Medicine and Biology Society. Proceedings of the Annual International Conference of the IEEE, 1988, vol 2, pp 565–566

  71. Hill AV (1938) The heat of shortening and the dynamic constants of muscle. Proc R Soc Lond B 126:136–195

    Google Scholar 

  72. Bell D (1993) The influence of air temperature on the EMG/force relationship of the quadriceps. Eur J Appl Physiol 67(3):256–260

    Google Scholar 

  73. Coggshall J, Bekey G (1970) EMG-force dynamics in human skeletal muscle. Med Biol Eng 8(3):265–270

    Google Scholar 

  74. Ramsey DK, Wretenberg PF (1999) Biomechanics of the knee: methodological considerations in the in vivo kinematic analysis of the tibiofemoral and patellofemoral joint. Clin Biomech 14(9):595–611

    Google Scholar 

  75. Maganaris CN (2004) Imaging-based estimates of moment arm length in intact human muscle-tendons. Eur J Appl Physiol 91(2–3):130–139

    Google Scholar 

  76. Morse CI, Thom JM, Reeves ND, Birch KM, Narici MV (2005) In vivo physiological cross-sectional area and specific force are reduced in the gastrocnemius of elderly men. J Appl Physiol 99(3):1050–1055

    Google Scholar 

  77. Schipplein OD, Andriacchi TP (1991) Interaction between active and passive knee stabilizers during level walking. J Orthop Res 9(1):113–119

    Google Scholar 

  78. Hamner SR, Delp SL (2013) Muscle contributions to fore-aft and vertical body mass center accelerations over a range of running speeds. J Biomech 46(4):780–787

    Google Scholar 

  79. Baratta R, Solomonow M, Zhou BH, Letson D, Chuinard R, D’Ambrosia R (1988) Muscular coactivation: the role of the antagonist musculature in maintaining knee stability. Am J Sports Med 16(2):113–122

    Google Scholar 

  80. Sverdlova NS, Witzel U (2010) Principles of determination and verification of muscle forces in the human musculoskeletal system: muscle forces to minimise bending stress. J Biomech 43(3):387–396

    Google Scholar 

  81. Gerus P, Sartori M, Besier TF, Fregly BJ, Delp SL, Banks SA, Pandy MG, D’Lima DD, Lloyd DG (2013) Subject-specific knee joint geometry improves predictions of medial tibiofemoral contact forces. J Biomech 46(16):2778

    Google Scholar 

  82. Anderson FC, Pandy MG (2001) Static and dynamic optimization solutions for gait are practically equivalent. J Biomech 34(2):153–161

    Google Scholar 

  83. Gray H, Standring S (eds) (2008) Gray’s anatomy: the anatomical basis of clinical practice, 40th edn. Churchill Livingstone, Edinburgh

    Google Scholar 

  84. Arndt AN, Komi PV, Brüggemann G-P, Lukkariniemi J (1998) Individual muscle contributions to the in vivo achilles tendon force. Clin Biomech 13(7):532–541

    Google Scholar 

  85. Fukashiro S, Komi PV, Järvinen M, Miyashita M (1995) In vivo Achilles tendon loading during jumping in humans. Eur J Appl Physiol 71(5):453–458

    Google Scholar 

  86. Fukashiro S, Komi PV, Järvinen M, Miyashita M (1993) Comparison between the directly measured achilles tendon force and the tendon force calculated from the ankle joint moment during vertical jumps. Clin Biomech 8(1):25–30

    Google Scholar 

  87. Gregor RJ, Komi PV, Järvinen M (1987) Achilles tendon forces during cycling. Int J Sports Med 8(Suppl 1):9–14

    Google Scholar 

  88. Gregor RJ, Komi PV, Browning RC, Järvinen M (1991) A comparison of the triceps surae and residual muscle moments at the ankle during cycling. J Biomech 24(5):287–297

    Google Scholar 

  89. Komi PV (1990) Relevance of in vivo force measurements to human biomechanics. J Biomech 23(Suppl 1):23–34

    Google Scholar 

  90. Komi PV, Salonen M, Järvinen M, Kokko O (1987) In vivo registration of Achilles tendon forces in man. I. Methodological development. Int J Sports Med 8(Suppl 1):3–8

    Google Scholar 

  91. Finni T, Komi PV, Lepola V (2000) In vivo human triceps surae and quadriceps femoris muscle function in a squat jump and counter movement jump. Eur J Appl Physiol 83(4–5):416– 426

  92. Finni T, Komi PV, Lepola V (2001) In vivo muscle mechanics during locomotion depend on movement amplitude and contraction intensity. Eur J Appl Physiol 85(1–2):170–176

    Google Scholar 

  93. Finni T, Ikegawa S, Lepola V, Komi PV (2003) Comparison of force-velocity relationships of vastus lateralis muscle in isokinetic and in stretch-shortening cycle exercises. Acta Physiol Scand 177(4):483–491

    Google Scholar 

  94. Lieber RL, Ward SR (2011) Skeletal muscle design to meet functional demands. Philos Trans R Soc B 366(1570):1466– 1476

  95. Stebbings GK, Morse CI, Williams AG, Day SH (2013) Variability and distribution of muscle strength and its determinants in humans. Muscle Nerve. doi:10.1002/mus.24075

  96. Canepari M, Pellegrino MA, D’Antona G, Bottinelli R (2010) Skeletal muscle fibre diversity and the underlying mechanisms. Acta Physiol 199(4):465–476

    Google Scholar 

  97. Hill AV (1950) Mechanics of the contractile element of muscle. Nature 166(4219):415–419

    Google Scholar 

  98. Shield A, Zhou S (2004) Assessing voluntary muscle activation with the twitch interpolation technique. Sports Med Auckl NZ 34(4):253–267

    Google Scholar 

  99. Huxley HE (1969) The mechanism of muscular contraction. Science 164(3886):1356–1365

    Google Scholar 

  100. Gordon AM, Huxley AF, Julian FJ (1966) The variation in isometric tension with sarcomere length in vertebrate muscle fibres. J Physiol 184(1):170–192

    Google Scholar 

  101. Close RI (1972) Dynamic properties of mammalian skeletal muscles. Physiol Rev 52(1):129–197

    Google Scholar 

  102. Zajac FE (1989) Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Crit Rev Biomed Eng 17(4):359–411

    Google Scholar 

  103. Al Nazer R, Klodowski A, Rantalainen T, Heinonen A, Sievänen H, Mikkola A (2011) A full body musculoskeletal model based on flexible multibody simulation approach utilised in bone strain analysis during human locomotion. Comput Methods Biomech Biomed Eng 14(6):573–579

    Google Scholar 

  104. Al Nazer R, Rantalainen T, Heinonen A, Sievänen H, Mikkola A (2008) Flexible multibody simulation approach in the analysis of tibial strain during walking. J Biomech 41(5):1036–1043

    Google Scholar 

  105. Anderson FC, Pandy MG (1999) A Dynamic Optimization Solution for Vertical Jumping in Three Dimensions. Comput Methods Biomech Biomed Eng 2(3):201–231

    Google Scholar 

  106. Hayashibe M, Guiraud D (2013) Voluntary EMG-to-force estimation with a multi-scale physiological muscle model. Biomed Eng OnLine 12(1):86

    Google Scholar 

  107. Wall JC, Chatterji S, Jeffery JW (1970) On the origin of scatter in results of human bone strenght tests. Med Biol Eng 8:171–180

    Google Scholar 

  108. Lindahl O, Lindgren AG (1967) Cortical bone in man. 1. Variation of the amount and density with age and sex. Acta Orthop Scand 38(2):133–140

    Google Scholar 

  109. Lindahl O, Lindgren AG (1967) Cortical bone in man. II. Variation in tensile strength with age and sex. Acta Orthop Scand 38(2):141–147

    Google Scholar 

  110. Wirtz DC, Schiffers N, Pandorf T, Radermacher K, Weichert D, Forst R (2000) Critical evaluation of known bone material properties to realize anisotropic FE-simulation of the proximal femur. J Biomech 33(10):1325–1330

    Google Scholar 

  111. Carter DR, Schwab GH, Spengler DM (1980) Tensile fracture of cancellous bone. Acta Orthop Scand 51(5):733–741

    Google Scholar 

  112. Reilly DT, Burstein AH (1974) The mechanical properties of cortical bone. J Bone Jt Surg Ser A 56(5):1001–1022

    Google Scholar 

  113. Knauss P (1981) Material properties and strength behaviour of spongy bone tissue at the coxal human femur. (author’s transl) [Materialkennwerte und Festigkeitsverhalten des spongiösen Knochengewebes am coxalen Human-Femur.]. Biomed Tech 26(9):200–210

    Google Scholar 

  114. Knauss P (1981) Material properties and strength behavior of the compact bone tissue at the coxal human-femur (author’s transl) [Materialkennwerte und Festigkeitsverhalten des kompakten Knochengewebes an coxalen Human-Femur.]. Biomed Tech 26(12):311–315

    Google Scholar 

  115. Ashman RB, Cowin SC, Van Buskirk WC, Rice JC (1984) A continuous wave technique for the measurement of the elastic properties of cortical bone. J Biomech 17(5):349–361

    Google Scholar 

  116. Ashman RB, Rho JY (1988) Elastic modulus of trabecular bone material. J Biomech 21(3):177–181

    Google Scholar 

  117. Carter DR, Caler WE, Spengler DM, Frankel VH (1981) Fatigue behavious of adult cortical bone: the influence of mean strain and strain rate. Acta Orthop Scand 52:481–491

    Google Scholar 

  118. Schaffler MB, Radin EL, Burr DB (1990) Long-term fatigue behavior of compact bone at low strain magnitude and rate. Bone 10:321–326

    Google Scholar 

  119. Bechard LJ, Wroe E, Ellis K (2008) Body composition and growth. In: Duggan C, Watkins B, John A, Walker W, (eds) Nutrition in pediatrics: basic science. Clinical Applications, 4th edn. PMPH-USA, 2008, p 30

  120. Smith EL, Gilligan C (1989) Mechanical forces and bone. J Bone Miner Res 6:139–173

    Google Scholar 

  121. Frost HM (1997) On our age-related bone loss: insights from a new paradigm. J Bone Miner Res 12:1539–1551

    Google Scholar 

  122. Fan Z, Swadener JG, Rho JY, Roy ME, Pharr GM (2002) Anisotropic properties of human tibial cortical bone as measured by nanoindentation. J Orthop Res 20:806–810

    Google Scholar 

  123. Lanyon LE, Hampson WGJ, Goodship AE, Shah JS (1975) Bone deformation recorded in vivo from strain gauges attached to the human tibial shaft. Acta Orthop Scand 46:256–268

    Google Scholar 

  124. Milgrom C, Finestone A, Segev S, Olin C, Arndt T, Ekenman I (2003) Are overground or treadmill runners more likely to sustain tibial stress fracture? Br J Sports Med 37:160–163

    Google Scholar 

  125. Milgrom C, Finestone A, Benjoyan N, Simkin A, Ekenman I, Burr DB (1998) Measurement of strain and strain rate developed by jumping exercises in vivo in humans. Proceedings of the 17th Southern Biomedical Engineering Conference. p 108, 6–8 Feb 1998. doi:10.1109/SBEC.1998.666715

  126. Milgrom C, Giladi M, Stein M, Kashtan H, Margulies JY, Chisin R, Steinberg R, Aharonson Z (1985) Stress fractures in military recruits. A prospective study showing an unusually high incidence. J Bone Jt Surg 67-B:732–735.

  127. Burr DB, Milgrom C, Fyhrie D, Forwood M, Nyska M, Finestone A, Hoshaw S, Saiag E, Simkin A (1996) In vivo measurement of human tibial strains during vigorous activity. Bone 18:405– 410

  128. Aamodt A, Lund-Larsen J, Eine J, Andersen E, Benum P, Schnell Husby O (1997) In vivo measurements show tensile axial strain in the proximal lateral aspect of the human femur. J Orthop Res 15:927–931

    Google Scholar 

  129. Akhter MP, Raab DM, Turner CH, Kimmel DB, Recker RR (1992) Characterization of in vivo strain in the rat tibia during external application of a four-point bending load. J Biomech 25(10):1241–1246

    Google Scholar 

  130. Lowet G, Audekercke RV, der Perre GV, Geusens P, Dequeker J, Lammens J (1993) The relation between resonant frequencies and torsional stiffness of long bones in vitro. Validation of a simple beam model. J Biomech 26(6):689–696

    Google Scholar 

  131. Thomsen JJ (1990) Modelling human tibia structural vibrations. J Biomech 23(3):215–228

    Google Scholar 

  132. Hibbeler RC (2005) Mechanics of materials, SI 2nd. Pearson Prentice Hall. ISBN: 0–7803–4924–5

  133. Erdman AG, Sandor N (1972) Kineto-elastodynamics–a review of the state of the art trends. Mech Mach Theory 7:19–33

    Google Scholar 

  134. Craig RR, Bampton MCC (1968) Coupling of substructures for dynamic analysis. AIAA J 6(7):1313–1319

    MATH  Google Scholar 

  135. Kłodowski A, Valkeapää A, Mikkola A (2011) Craig-Bampton modal reduction applied to human tibia tradeoff between accuracy and speed. Denver

  136. Rhee DK, Marcelino J, Baker M, Gong Y, Smits P, Lefebvre V, Jay GD, Stewart M, Wang H, Warman ML, Carpten JD (2005) The secreted glycoprotein lubricin protects cartilage surfaces and inhibits synovial cell overgrowth. J Clin Investig 115(3):622–631

    Google Scholar 

  137. Johns RJ, Wright V (1962) Relative importance of various tissues in joint stiffness. J Appl Physiol 17(5):824–828

    Google Scholar 

  138. Granata KP, Wilson SE, Padua DA (2002) Gender differences in active musculoskeletal stiffness. Part I: Quantification in controlled measurements of knee joint dynamics. J Electromyogr Kinesiol 12(2):119–126

    Google Scholar 

  139. Shelburne KB, Torry MR, Pandy MG (2006) Contributions of muscles, ligaments, and the ground-reaction force to tibiofemoral joint loading during normal gait. J Orthop Res 24(10):1983– 1990

  140. Silva MPT, Ambrósio JAC, Pereira MS (1997) Biomechanical model with joint resistance for impact simulation. Multibody Syst Dyn 1(1):65–84

    MATH  Google Scholar 

  141. Bei Y, Fregly BJ (2004) Multibody dynamic simulation of knee contact mechanics. Med Eng Phys 26(9):777–789

    Google Scholar 

  142. Ambrósio JAC (2003) Impact of rigid and flexible multibody systems: deformation description and contact models. In: Schiehlen W, Valášek M (eds) Virtual nonlinear multibody systems, vol 103. Springer, The Netherlands, pp 57–81

    Google Scholar 

  143. Ambrósio J, Silva M (2005) Multibody dynamics approaches for biomechanical modeling in human impact applications. In: Gilchrist MD (ed) IUTAM symposium on impact biomechanics: from fundamental insights to applications, vol 124. Springer, The Netherlands, pp 61–80

    Google Scholar 

  144. Guess M, Thiagarajan Trent G, Kia M, Mishra M (2010) A subject specific multibody model of the knee with menisci. Med Eng Phys 32:505–515

    Google Scholar 

  145. Rath E, Richmond JC (2000) The menisci: basic science and advances in treatment. Br J Sports Med 34(4):252–257

    Google Scholar 

  146. Huiskes R, Chao EYS (1983) A survey of finite element analysis in orthopedic biomechanics: the first decade. J Biomech 16(6):385–409

  147. Rantalainen T, Kłodowski A (2011) Estimating lower limb skeletal loading. In: Klika V (ed) Theoretical biomechanics. Croatia, Rijeka

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Kłodowski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kłodowski, A., Rantalainen, T. Multibody Approach to Musculoskeletal and Joint Loading. Arch Computat Methods Eng 22, 237–267 (2015). https://doi.org/10.1007/s11831-014-9106-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-014-9106-z

Keywords

Navigation