Skip to main content
Log in

Impact of photocatalytic remediation of pollutants on urban air quality

  • Research Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

In the recent years, photocatalytic self-cleaning and “depolluting” materials have been suggested as a remediation technology mainly for NO x and aromatic VOCs in urban areas. A number of products incorporating the aforementioned technology have been made commercially available with the aim to improve urban air quality. These commercial products are based on the photocatalytic properties of a thin layer of TiO2 at the surface of the material (such as glass, pavement, etc.) or embedded in paints or concrete. The use of TiO2 photocatalysts as an emerging air pollution control technology has been reported in many locations worldwide. However, up to now, the effectiveness measured in situ and the expected positive impact on air quality of this relatively new technology has only been demonstrated in a limited manner. Assessing and demonstrating the effectiveness of these depolluting techniques in real scale applications aims to create a real added value, in terms of policy making (i.e., implementing air quality strategies) and economics (by providing a demonstration of the actual performance of a new technique).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. EEA. Air quality in Europe—Report No 9/2013: ISSN 1725–9177 European Environment Agency, Luxembourg: Publications Office of the European Union, 2013

  2. OECD. OECD Environmental Outlook to 2050: The Consequences of Inaction.Paris: OECD Publishing, 2012

  3. Dockery D W, Pope C A, Xu X, Spengler J D, Ware J H, Fay M E, Ferris B GJr, Speizer F E. An association between air pollution and mortality in six U.S. cities. New England Journal of Medicine, 1993, 329(24): 1753–1759

    Article  CAS  Google Scholar 

  4. Finlayson-Pitts B J, Pitts J N. Chemistry of the Upper and Lower Atmosphere: Theory, Experiments, and Applications. San Diego: Academic Press, 2000

    Google Scholar 

  5. Melkonyan A, Kuttler W. Long-term analysis of NO, NO2 and O3 concentrations in North Rhine-Westphalia, Germany. Atmospheric Environment, 2012, 60: 316–326

    Article  CAS  Google Scholar 

  6. Carslaw D C, Beevers S D, Bell M C. Risks of exceeding the hourly EU limit value for nitrogen dioxide resulting from increased road transport emissions of primary nitrogen dioxide. Atmospheric Environment, 2007, 41(10): 2073–2082

    Article  CAS  Google Scholar 

  7. Kurtenbach R, Kleffmann J, Niedojadlo A, Wiesen P. Primary NO2 emissions and their impact on air quality in traffic environments in Germany. Environmental Sciences Europe, 2012, 24(1): 1–8

    Article  Google Scholar 

  8. Beevers S D, Westmoreland E, de Jong M C, Williams M L, Carslaw D C. Trends in NOx and NO2 emissions from road traffic in Great Britain. Atmospheric Environment, 2012, 54: 107–116

    Article  CAS  Google Scholar 

  9. Kurz C, Orthofer R, Sturm P, Kaiser A, Uhrner U, Reifeltshammer R, Rexeis M. Projection of the air quality in Vienna between 2005 and 2020 for NO2 and PM10. Urban Climate, 2014, 10, Part 4(0): 703–719

    Google Scholar 

  10. Maggos T, Plassais A, Bartzis J G, Vasilakos C, Moussiopoulos N, Bonafous L. Photocatalytic degradation of NOx in a pilot street canyon configuration using TiO2-mortar panels. Environmental Monitoring and Assessment, 2008, 136(1–3): 35–44

    CAS  Google Scholar 

  11. Schneider J, Matsuoka M, Takeuchi M, Zhang J, Horiuchi Y, Anpo M, Bahnemann D W. Understanding TiO2 photocatalysis: mechanisms and materials. Chemical Reviews, 2014, 114(19): 9919–9986

    Article  CAS  Google Scholar 

  12. Strini A, Cassese S, Schiavi L. Measurement of benzene, toluene, ethylbenzene and o-xylene gas phase photodegradation by titanium dioxide dispersed in cementitious materials using a mixed flow reactor. Applied Catalysis B: Environmental, 2005, 61(1–2): 90–97

    Article  CAS  Google Scholar 

  13. Hoffmann M R, Martin S T, Choi W, Bahnemann D W. Environmental applications of semiconductor photocatalysis. Environmental Applications of Semiconductor Photocatalysis. Chemical Reviews (Washington, D. C.), 1995, 95(1): 69–96

    Article  CAS  Google Scholar 

  14. Herrmann J M. Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants. Catalysis Today, 1999, 53(1): 115–129

    Article  CAS  Google Scholar 

  15. Chen H, Nanayakkara C E, Grassian V H. Titanium dioxide photocatalysis in atmospheric chemistry. Chemical Reviews, 2012, 112(11): 5919–5948

    Article  CAS  Google Scholar 

  16. Goodeve C F, Kitchener J A. Photosensitisation by titanium dioxide. Transactions of the Faraday Society, 1938, 34(0): 570–579

    Article  CAS  Google Scholar 

  17. Renz C. Lichtreaktionen der Oxyde des Titans, Cers und der Erdsäuren. Helvetica ChimicaActa, 1921, 4(1): 961–968 (in German)

    Article  CAS  Google Scholar 

  18. Fujishima A, Zhang X, Tryk D A. TiO2 photocatalysis and related surface phenomena. Surface Science Reports, 2008, 63(12): 515–582

    Article  CAS  Google Scholar 

  19. Henderson M A. A surface science perspective on TiO2 photocatalysis. Surface Science Reports, 2011, 66(6–7): 185–297

    Article  CAS  Google Scholar 

  20. Auvinen J, Wirtanen L. The influence of photocatalytic interior paints on indoor air quality. Atmospheric Environment, 2008, 42(18): 4101–4112

    Article  CAS  Google Scholar 

  21. Beaumont S K, Gustafsson R J, Lambert R M. Heterogeneous photochemistry relevant to the troposphere: H2O2 production during the photochemical reduction of NO2 to HONO on UV-illuminated TiO2 surfaces. ChemPhysChem, 2009, 10(2): 331–333

    Article  CAS  Google Scholar 

  22. Geiss O, Cacho C, Barrero-Moreno J, Kotzias D. Photocatalytic degradation of organic paint constituents-formation of carbonyls. Building and Environment, 2012, (48): 107–112

    Article  Google Scholar 

  23. Gustafsson R J, Orlov A, Griffiths P T, Cox R A, Lambert R M. Reduction of NO2 to nitrous acid on illuminated titanium dioxide aerosol surfaces: implications for photocatalysis and atmospheric chemistry. Chemical Communications (Cambridge), 2006, (37): 3936–3938

    Article  Google Scholar 

  24. Monge M E, D’Anna B, George C. Nitrogen dioxide removal and nitrous acid formation on titanium oxide surfaces-an air quality remediation process? Physical Chemistry Chemical Physics, 2010, 12(31): 8991–8999

    Article  CAS  Google Scholar 

  25. Ndour M, D’Anna B, George C, Ka O, Balkanski Y, Kleffmann J, Stemmler K, Ammann M. Photoenhanced uptake of NO2 on mineral dust: laboratory experiments and model simulations. Geophysical Research Letters, 2008, 35(5): L05812, 1–5

    Article  Google Scholar 

  26. Salthammer T, Fuhrmann F. Photocatalytic surface reactions on indoor wall paint. Environmental Science & Technology, 2007, 41(18): 6573–6578

    Article  CAS  Google Scholar 

  27. Boonen E, Akylas V, Barmpas F, Boréave A, Bottalico L, Cazaunau M, Chen H, Daële V, De Marco T, Doussin J F, Gaimoz C, Gallus M, George C, Grand N, Grosselin B, Guerrini G L, Herrmann H, Ifang S, Kleffmann J, Kurtenbach R, Maille M, Manganelli G, Mellouki A, Miet K, Mothes F, Moussiopoulos N, Poulain L, Rabe R, Zapf P, Beeldens A. Construction of a photocatalytic de-polluting field site in the Leopold II tunnel in Brussels. Journal of Environmental Management, 2015, 155(0): 136–144

    Article  CAS  Google Scholar 

  28. Gallus M, Akylas V, Barmpas F, Beeldens A, Boonen E, Boreave A, Cazaunau M, Chen H, Daele V, Doussin J F, Dupart Y, Gaimoz C, George C, Grosselin B, Herrmann H, Ifang S, Kurtenbach R, Maille M, Mellouki A, Miet K, Mothes F, Moussiopoulos N, Poulain L, Rabe R, Zapf P, Kleffmann J. Photocatalytic de-pollution in the Leopold II tunnel in Brussels: NOx abatement results. Building and Environment, 2015, (84): 125–133

    Article  Google Scholar 

  29. Crowley J N, Ammann M, Cox R A, Hynes R G, Jenkin M E, Mellouki A, Rossi M J, Troe J, Wallington T J. Evaluated kinetic and photochemical data for atmospheric chemistry: Volume V—heterogeneous reactions on solid substrates. Atmospheric Chemistry and Physics, 2010, 10(18): 9059–9223

    Article  CAS  Google Scholar 

  30. Ammann M, Cox R A, Crowley J N, Jenkin M E, Mellouki A, Rossi M J, Troe J, Wallington T J. Evaluated kinetic and photochemical data for atmospheric chemistry: Volume VI—heterogeneous reactions with liquid substrates. Atmospheric Chemistry and Physics, 2013, 13(16): 8045–8228

    Article  Google Scholar 

  31. Ammann M, Pöschl U, Rudich Y. Effects of reversible adsorption and Langmuir-Hinshelwood surface reactions on gas uptake by atmospheric particles. Physical Chemistry Chemical Physics, 2003, 5(2): 351–356

    Article  CAS  Google Scholar 

  32. Hashimoto K, Wasada K, Toukai N, Kominami H, Kera Y. Photocatalytic oxidation of nitrogen monoxide over titanium(IV) oxide nanocrystals large size areas. Journal of Photochemistry and Photobiology A Chemistry, 2000, 136(1–2): 103–109

    Article  CAS  Google Scholar 

  33. Hoffmann M R, Martin S T, Choi W Y, Bahnemann D W. Environmental applications of semiconductor photocatalysis. Chemical Reviews, 1995, 95(1): 69–96

    Article  CAS  Google Scholar 

  34. Shang J, Du Y, Xu Z. Photocatalytic oxidation of heptane in the gas-phase over TiO2. Chemosphere, 2002, 46(1): 93–99

    Article  CAS  Google Scholar 

  35. Rohrer F, Bohn B, Brauers T, Brüning D, Johnen J F, Wahner A, Kleffmann J. Characterisation of the photolytic HONO-source in the atmosphere simulation chamber SAPHIR. Atmospheric Chemistry and Physics Discussion, 2004, 4(6): 7881–7915

    Article  Google Scholar 

  36. Gallus M, Ciuraru R, Mothes F, Akylas V, Barmpas F, Beeldens A, Bernard F, Boonen E, Boréave A, Cazaunau M, Charbonnel N, Chen H, Daële V, Dupart Y, Gaimoz C, Grosselin B, Herrmann H, Ifang S, Kurtenbach R, Maille M, Marjanovic I, Michoud V, Mellouki A, Miet K, Moussiopoulos N, Poulain L, Zapf P, George C, Doussin J F, Kleffmann J. Photocatalytic abatement results from a model street canyon. Environmental Science and Pollution Research International, 2015, 22(22):18185–18196

    Article  CAS  Google Scholar 

  37. Ballari M M, Brouwers H J H. Full scale demonstration of airpurifying pavement. Journal of Hazardous Materials, 2013, 254–255: 406–414

    Article  Google Scholar 

  38. Bolte G, Flassak T. Numerische Simulation der Wirksamkeit photo katalytis chaktiver Betonoberflächen. In: Conference Proceedings of Internationale Baustofftagung 18. Ibausil, Weimar.Weimar: Internationale Baustofftagung 18. ibausil, 2012

    Google Scholar 

  39. Guerrini G L, Peccati E. Photocatalytic cementitious roads for depollution. In: Proceedings of International RILEM Symposium on Photocatalysis, Environment and Construction Materials, Florence, Italy. Bagneux: RILEM Publications, 2007

    Google Scholar 

  40. Ifang S, Gallus M, Liedtke S, Kurtenbach R, Wiesen P, Kleffmann J. Standardization methods for testing photo-catalytic air remediation materials: problems and solution. Atmospheric Environment, 2014, (91): 154–161

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian George.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

George, C., Beeldens, A., Barmpas, F. et al. Impact of photocatalytic remediation of pollutants on urban air quality. Front. Environ. Sci. Eng. 10, 2 (2016). https://doi.org/10.1007/s11783-016-0834-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11783-016-0834-1

Keywords

Navigation