Skip to main content
Log in

Analysis of nano droplet dynamics with various sphericities using efficient computational techniques

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Motion of a vertically falling nano droplet in incompressible Newtonian media with initial velocity is investigated. The instantaneous velocity and acceleration are carried out by using the variational iteration method (VIM) and homotopy perturbation method (HPM), which are analytical solution techniques. The obtained results are compared with Runge–Kutta method in order to verify the accuracy of the proposed methods. The results show that, the analytical solutions are in good agreement with each other and with the numerical solution. Also, the effects of sphericity (φ) on the velocity and acceleration profiles of the nano droplet are explained. Moreover, the results demonstrate that the VIM-Padé and HPM-Padé are very effective in generating analytical solutions for even highly nonlinear problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. ZOLFAGHARIAN A, VALIPOUR P, GHASEMI S E. Fuzzy force learning controller of flexible wiper system [J]. Neural Computing and Application, 2016(27): 483-493

    Article  Google Scholar 

  2. ZOLFAGHARIAN A, NOSHADI A, GHASEMI S E M D, ZAIN M Z. A nonparametric approach using artificial intelligence in vibration and noise reduction of flexible systems, Proceedings of the Institution of Mechanical Engineers, Part C, Journal of Mechanical Engineering Science, 2014, 228(8): 1329-1347.

    Article  Google Scholar 

  3. NOSHADI A, MAILAH M, ZOLFAGHARIAN A. Intelligent active force control of a 3-RRR parallel manipulator incorporating fuzzy resolved acceleration control [J]. Applied Mathematical Modelling, 2012, 36(6): 2370-2383.

    Article  MathSciNet  MATH  Google Scholar 

  4. ZOLFAGHARIAN A, NOSHADI A, KHOSRAVANI M R M D, ZAIN M Z. Unwanted noise and vibration control using finite element analysis and artificial intelligence in flexible wiper system [J]. Applied Mathematical Modelling, 2014, 38: 2435-2453.

    Article  Google Scholar 

  5. ZOLFAGHARIAN A, GHASEMI S E, IMANI M. A multi-objective, active fuzzy force controller in control of flexible wiper system [J]. Latin Am J Solids Struct, 2014, 11(9): 1490-514.

    Article  Google Scholar 

  6. AHMADI ASOOR A A, VALIPOUR P, GHASEMI S E. Investigation on vibration of single walled carbon nanotubes by variational iteration method [J]. Appl Nanosci, 2016, 6: 243-249.

    Article  Google Scholar 

  7. GHASEMI S E, JALILI PALANDI S, HATAMI M, GANJI D D. Efficient analytical approaches for motion of a spherical solid particle in plane couette fluid flow using nonlinear methods [J]. The Journal of Mathematics and Computer Science 2012, 5(2): 97-104

    Google Scholar 

  8. GHASEMI S E, HATAMI M, GANJI D D. Analytical thermal analysis of air-heating solar collectors [J]. Journal of Mechanical Science and Technology, 2013, 27(11): 3525-3530.

    Article  Google Scholar 

  9. MOHAMMADIAN E, GHASEMI S E, POORGASHTI H, HOSSEINI M, GANJI D D. Thermal investigation of Cu–water nanofluid between two vertical planes [J]. Proc IMechE Part E: J Process Mechanical Engineering 2015, 229(1): 36-43.

    Google Scholar 

  10. GHASEMI S E, HATAMI M, GANJI D D. Thermal analysis of convective fin with temperature-dependent thermal conductivity and heat generation [J]. Case Studies in Thermal Engineering, 2014(4): 1-8.

    Article  Google Scholar 

  11. GHASEMI S E, VALIPOUR P, HATAMI M, GANJI D D. Heat transfer study on solid and porous convective fins with temperaturedependent heat generation using efficient analytical method [J]. Journal of Central South University, 2014, 21: 4592-4598.

    Article  Google Scholar 

  12. AHMADI ASOOR A A, VALIPOUR P, GHASEMI S E, GANJI D D. Mathematical modelling of carbon nanotube with fluid flow using Keller box method: A vibrational study [J]. Int J Appl Comput Math DOI 10.1007/s40819-016-0206-3.

  13. VALIPOUR P, GHASEMI S E. Numerical investigation of MHD water-based nanofluids flow in porous medium caused by shrinking permeable sheet [J]. J Braz Soc Mech Sci Eng, 2016, 38: 859-868.

    Article  Google Scholar 

  14. GHASEMI S E, HATAMI M, JING D, GANJI D D. Nanoparticles effects on MHD fluid flow over a stretching sheet with solar radiation: A numerical study [J]. Journal of Molecular Liquids 2016, 219: 890-896.

    Article  Google Scholar 

  15. GHASEMI S E, ZOLFAGHARIAN A, GANJI D D. Study on motion of rigid rod on a circular surface using MHPM [J]. Propulsion and Power Research, 2014, 3(3): 159-164.

    Article  Google Scholar 

  16. GHASEMI S E, HATAMI M, HATAMI J, SAHEBI S A R, GANJI D D. An efficient approach to study the pulsatile blood flow in femoral and coronary arteries by Differential Quadrature Method [J]. Physica A, 2016, 443: 406-414.

    Article  MathSciNet  Google Scholar 

  17. GHASEMI S E, HATAMI M, ARMIA SALARIAN, DOMAIRRY G. Thermal and fluid analysis on effects of a nanofluid outside of a stretching cylinder with magnetic field the using differential quadrature method [J]. Journal of Theoretical and Applied Mechanics 2016, 54(2): 517-528.

    Article  Google Scholar 

  18. GHASEMI S E, HATAMI M, MEHDIZADEH AHANGAR G H R, GANJI D D. Electrohydrodynamic flow analysis in a circular cylindrical conduit using Least Square Method [J]. Journal of Electrostatics, 2014, 72: 47-52.

    Article  Google Scholar 

  19. GHASEMI S E, VATANI M, GANJI D D. Efficient approaches of determining the motion of a spherical particle in a swirling fluid flow using weighted residual methods [J]. Particuology, 2015, 23: 68-74.

    Article  Google Scholar 

  20. DARZI M, VATANI M, GHASEMI S E, GANJI D D. Effect of thermal radiation on velocity and temperature fields of a thin liquid film over a stretching sheet in a porous medium [J]. Eur Phys J Plus, 2015, 130: 100.

    Article  Google Scholar 

  21. GHASEMI S E, VATANI M, HATAMI M, GANJI D D. Analytical and numerical investigation of nanoparticle effect on peristaltic fluid flow in drug delivery systems [J]. Journal of Molecular Liquids, 2016, 215: 88-97.

    Article  Google Scholar 

  22. ATOUEI S A, HOSSEINZADEH K H, HATAMI M, GHASEMI S E, SAHEBI S A R, GANJI D D. Heat transfer study on convective-radiative semi-spherical fins with temperature-dependent properties and heat generation using efficient computational methods [J]. Applied Thermal Engineering, 2015, 89: 299-305.

    Article  Google Scholar 

  23. GHASEMI S E, HATAMI M, KALANI SAROKOLAIE A, GANJI D D. Study on blood flow containing nanoparticles through porous arteries in presence of magnetic field using analytical methods [J]. Physica, 2015, E70: 146-156.

    Article  Google Scholar 

  24. VALIPOUR P, GHASEMI S E, MOHAMMAD REZA KHOSRAVANI, GANJI D D. Theoretical analysis on nonlinear vibration of fluid flow in single-walled carbon nanotube [J]. J Theor Appl Phys, 2016, 10: 211-218.

    Article  Google Scholar 

  25. VATANI M, GHASEMI S E, GANJI D D. Investigation of micropolar fluid flow between a porous disk and a nonporous disk using efficient computational technique [J]. Proc IMechE Part E: J Process Mechanical Engineering, 2016, 230(6): 413-424.

    Google Scholar 

  26. VALIPOUR P, GHASEMI S E, VATANI M. Theoretical investigation of micropolar fluid flow between two porous disks [J]. Journal of Central South University, 2015, 22: 2825-2832.

    Article  Google Scholar 

  27. TALARPOSHTI R A, GHASEMI S E, RAHMANI Y, GANJI D D. Application of exp-function method to wave solutions of the sine-Gordon and Ostrovsky equations [J]. Acta Mathematicae Applicatae Sinica, English Series 2016, 32(3): 571-578.

    Article  MathSciNet  MATH  Google Scholar 

  28. CLIFT R, GRACE J, WEBER M E. Bubbles, drops and particles [M]. New York: Academic Press, 1978.

    Google Scholar 

  29. KHAN A R, RICHARDSON J F. The resistance to motion of a solid sphere in a fluid [J]. Chemical Engineering Communications, 1987, 62: 135-150.

    Article  Google Scholar 

  30. CHIEN S F. Settling velocity of irregularly shaped particles [J]. SPE Drilling and Completion, 1994, 9: 281-289.

    Article  Google Scholar 

  31. FERNÁNDEZ F M. On the homotopy perturbation method for Boussinesq-like equations [J]. Applied Mathematics and Computation, 2014, 230(3): 208-210.

    Article  MathSciNet  Google Scholar 

  32. AKHAVAN BEHABADI M A, SADOUGHI M K, DARZI M, FAKOOR PAKDAMAN M. Experimental study on heat transfer characteristics of R600a/POE/CuO nano-refrigerant flow condensation [J]. Experimental Thermal and Fluid Science, 2015, 66: 46-52.

    Article  Google Scholar 

  33. DARZI M, AKHAVAN BEHABADI M A, SADOUGHI M K, RAZI P. Experimental study of horizontal flattened tubes performance on condensation of R600a vapor [J]. International Communications in Heat and Mass Transfer, 2015, 62: 18-25.

    Article  Google Scholar 

  34. SAZHIN Sergei, CRUA Cyril, KENNAIRD David, HEIKAL Morgan. The initial stage of fuel spray penetration [J]. Fuel, 2003, 82(8): 875-885.

    Article  Google Scholar 

  35. SAZHIN Sergei, SHAKKED Tal, SOBOLEV Vladimir, KATOSHEVSKI David. Particle grouping in oscillating flows [J]. European Journal of Mechanics B/Fluids, 2008, 27: 131-149.

    Article  MathSciNet  MATH  Google Scholar 

  36. NOOR M A, MOHYUD-DIN S T. Variational iteration method for unsteady flow of gas through a porous medium using He’s polynomials and Pade approximants [J]. Computers and Mathematics with Applications, 2009, 58: 2182-2189.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. E. Ghasemi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zolfagharian, A., Darzi, M. & Ghasemi, S.E. Analysis of nano droplet dynamics with various sphericities using efficient computational techniques. J. Cent. South Univ. 24, 2353–2359 (2017). https://doi.org/10.1007/s11771-017-3647-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-017-3647-x

Key words

Navigation