Skip to main content
Log in

Progress in nanostructured photoanodes for dye-sensitized solar cells

  • Review Article
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

Abstract

Solar cells represent a principal energy technology to convert light into electricity. Commercial solar cells are at present predominately produced by single- or multi-crystalline silicon wafers. The main drawback to silicon-based solar cells, however, is high material and manufacturing costs. Dye-sensitized solar cells (DSSCs) have attracted much attention during recent years because of the low production cost and other advantages. The photoanode (working electrode) plays a key role in determining the performance of DSSCs. In particular, nanostructured photoanodes with a large surface area, high electron transfer efficiency, and low electron recombination facilitate to prepare DSSCs with high energy conversion efficiency. In this review article, we summarize recent progress in the development of novel photoanodes for DSSCs. Effect of semiconductor material (e.g. TiO2, ZnO, SnO2, N2O5, and nano carbon), preparation, morphology and structure (e.g. nanoparticles, nanorods, nanofibers, nanotubes, fiber/particle composites, and hierarchical structure) on photovoltaic performance of DSSCs is described. The possibility of replacing silicon-based solar cells with DSSCs is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Backus C E. Solar Cells. New York: IEEE Press, 1976, 511

    Google Scholar 

  2. Calogero G, Marco G D. Red sicilian orange and purple eggplant fruits as natural sensitizers for dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 2008, 92(11): 1341–1346

    Article  Google Scholar 

  3. Wang A, Zhao J, Green M A. 24% efficient silicon solar cells. Applied Physics Letters, 1990, 57(6): 602–604

    Article  Google Scholar 

  4. Ali N, Hussain A, Ahmed R, et al. Advances in nanostructured thin film materials for solar cell applications. Renewable & Sustainable Energy Reviews, 2016, 59: 726–737

    Article  Google Scholar 

  5. Takahashi K, Konagai M. Amorphous Silicon Solar Cells. Canada: John Wiley & Sons, Ltd., 1986, 225

    Google Scholar 

  6. Galloni R. Amorphous silicon solar cells. Renewable Energy, 1996, 8(1–4): 400–404

    Article  Google Scholar 

  7. Tian J, Cao G. Design, fabrication and modification of metal oxide semiconductor for improving conversion efficiency of excitonic solar cells. Coordination Chemistry Reviews, 2016, doi: 10.1016/j.ccr.2016.02.016 (in press)

    Google Scholar 

  8. Green M A, Emery K, Hishikawa Y, et al. Solar cell efficiency tables (version 36). Progress in Photovoltaics: Research and Applications, 2010, 18(5): 346–352

    Article  Google Scholar 

  9. O'Regan B, Gratzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991, 353(6346): 737–740

    Article  Google Scholar 

  10. Grätzel M. Dye-sensitized solar cells. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2003, 4(2): 145–153

    Article  Google Scholar 

  11. Ye M, Chen C, Lv M, et al. Facile and effective synthesis of hierarchical TiO2 spheres for efficient dye-sensitized solar cells. Nanoscale, 2013, 5(14): 6577–6583

    Article  Google Scholar 

  12. Miao X, Pan K, Liao Y, et al. Controlled synthesis of mesoporous anatase TiO2 microspheres as scattering layer to enhance photoelectrical conversion efficiency. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2013, 1(34): 9853

    Article  Google Scholar 

  13. McCune M, Zhang W, Deng Y. High efficiency dye-sensitized solar cells based on three-dimensional multilayered ZnO nanowire arrays with “caterpillar-like” structure. Nano Letters, 2012, 12(7): 3656–3662

    Article  Google Scholar 

  14. Chen L Y, Yin Y T. Hierarchically assembled ZnO nanoparticles on high diffusion coefficient ZnO nanowire arrays for high efficiency dye-sensitized solar cells. Nanoscale, 2013, 5(5): 1777–1780

    Article  Google Scholar 

  15. Wang H, Li B, Gao J, et al. SnO2 hollow nanospheres enclosed by single crystalline nanoparticles for highly efficient dye-sensitized solar cells. CrystEngComm, 2012, 14(16): 5177–5181

    Article  Google Scholar 

  16. Chen J, Li C, Xu F, et al. Hollow SnO2 microspheres for highefficiency bilayered dye sensitized solar cell. RSC Advances, 2012, 2(19): 7384–7387

    Article  Google Scholar 

  17. Burschka J, Pellet N, Moon S J, et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 2013, 499(7458): 316–319

    Article  Google Scholar 

  18. Li D, Xia Y. Fabrication of titania nanofibers by electrospinning. Nano Letters, 2003, 3(4): 555–560

    Article  Google Scholar 

  19. Zhu H, Tao J, Wang T, et al. Growth of branched rutile TiO2 nanorod arrays on F-doped tin oxide substrate. Applied Surface Science, 2011, 257(24): 10494–10498

    Google Scholar 

  20. Chang S S, Shih C W, Chen C D, et al. The shape transition of gold nanorods. Langmuir, 1999, 15(3): 701–709

    Article  Google Scholar 

  21. Gao J, Bender C M, Murphy C J. Dependence of the gold nanorod aspect ratio on the nature of the directing surfactant in aqueous solution. Langmuir, 2003, 19(21): 9065–9070

    Article  Google Scholar 

  22. Li Y D, Liao H W, Ding Y, et al. Nonaqueous synthesis of CdS nanorod semiconductor. Chemistry of Materials, 1998, 10(9): 2301–2303

    Article  Google Scholar 

  23. Li Y D, Liao H W, Ding Y, et al. Solvothermal elemental direct reaction to CdE (E = S, Se, Te) semiconductor nanorod. Inorganic Chemistry, 1999, 38(7): 1382–1387

    Article  Google Scholar 

  24. Hafez H, Lan Z, Li Q, et al. High efficiency dye-sensitized solar cell based on novel TiO2 nanorod/nanoparticle bilayer electrode. Nanotechnology Science and Applications, 2010, 3: 45–51

    Article  Google Scholar 

  25. Sedach P A, Gordon T J, Sayed S Y, et al. Solution growth of anatase TiO2 nanowires from transparent conducting glass substrates. Journal of Materials Chemistry, 2010, 20(24): 5063–5069

    Article  Google Scholar 

  26. Huang Q, Zhou G, Fang L, et al. TiO2 nanorod arrays grown from a mixed acid medium for efficient dye-sensitized solar cells. Energy & Environmental Science, 2011, 4(6): 2145–2151

    Article  Google Scholar 

  27. Liu B, Aydil E S. Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells. Journal of the American Chemical Society, 2009, 131(11): 3985–3990

    Article  Google Scholar 

  28. Lv M, Zheng D, Ye M, et al. Optimized porous rutile TiO2 nanorod arrays for enhancing the efficiency of dye-sensitized solar cells. Energy & Environmental Science, 2013, 6(5): 1615–1622

    Article  Google Scholar 

  29. Mukherjee K, Teng T, Jose R, et al. Electron transport in electrospun TiO2 nanofiber dye-sensitized solar cells. Applied Physics Letters, 2009, 95(1): 012101 (3 pages)

    Article  Google Scholar 

  30. Chen H, Di J, Wang N, et al. Fabrication of hierarchically porous inorganic nanofibers by a general microemulsion electrospinning approach. Small, 2011, 7(13): 1779–1783

    Article  Google Scholar 

  31. Lee B H, Song M Y, Jang S Y, et al. Charge transport characteristics of high efficiency dye-sensitized solar cells based on electrospun TiO2 nanorod photoelectrodes. The Journal of Physical Chemistry C, 2009, 113(51): 21453–21457

    Article  Google Scholar 

  32. Song M Y, Kim D K, Ihn K J, et al. Electrospun TiO2 electrodes for dye-sensitized solar cells. Nanotechnology, 2004, 15(12): 1861–1865

    Article  Google Scholar 

  33. Song M Y, Kim D K, Jo S M, et al. Enhancement of the photocurrent generation in dye-sensitized solar cell based on electrospun TiO2 electrode by surface treatment. Synthetic Metals, 2005, 155(3): 635–638

    Article  Google Scholar 

  34. Zhu R, Jiang C, Liu X, et al. Improved adhesion of interconnected TiO2 nanofiber network on conductive substrate and its application in polymer photovoltaic devices. Applied Physics Letters, 2008, 93(1): 013102 (3 pages)

    Article  Google Scholar 

  35. Ito S, Murakami T N, Comte P, et al. Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%. Thin Solid Films, 2008, 516(14): 4613–4619

    Article  Google Scholar 

  36. Liu X, Fang J, Gao M, et al. Improvement of light harvesting and device performance of dye-sensitized solar cells using rod-like nanocrystal TiO2 overlay coating on TiO2 nanoparticle working electrode. Materials Chemistry and Physics, 2015, 151: 330–336

    Article  Google Scholar 

  37. Roy P, Kim D, Lee K, et al. TiO2 nanotubes and their application in dye-sensitized solar cells. Nanoscale, 2010, 2(1): 45–59

    Article  Google Scholar 

  38. Jennings J R, Ghicov A, Peter L M, et al. Dye-sensitized solar cells based on oriented TiO2 nanotube arrays: transport, trapping, and transfer of electrons. Journal of the American Chemical Society, 2008, 130(40): 13364–13372

    Article  Google Scholar 

  39. Xie Y, Zhou L, Huang H, et al. Microstructure promoted photosensitization activity of dye-titania/titanium composites. Composites Part A: Applied Science and Manufacturing, 2008, 39(4): 690–696

    Article  Google Scholar 

  40. Park H, Kim W R, Jeong H T, et al. Fabrication of dye-sensitized solar cells by transplanting highly ordered TiO2 nanotube arrays. Solar Energy Materials and Solar Cells, 2011, 95(1): 184–189

    Article  Google Scholar 

  41. Teo WE, Ramakrishna S. Electrospun nanofibers as a platform for multifunctional, hierarchically organized nanocomposite. Composites Science and Technology, 2009, 69(11–12): 1804–1817

    Article  Google Scholar 

  42. Li Y, Gong J, Deng Y. Hierarchical structured ZnO nanorods on ZnO nanofibers and their photoresponse to UV and visible lights. Sensors and Actuators A: Physical, 2010, 158(2): 176–182

    Article  Google Scholar 

  43. Sun C H, Wang N X, Zhou S Y, et al. Preparation of selfsupporting hierarchical nanostructured anatase/rutile composite TiO2 film. Chemical Communications, 2008, (28): 3293–3295

    Article  Google Scholar 

  44. Su C C, Hung W C, Lin C J, et al. The preparation of composite TiO2 electrodes for dye-sensitized solar cells. Journal of the Chinese Chemical Society, 2010, 57: 1131–1135

    Article  Google Scholar 

  45. Tan B, Wu Y. Dye-sensitized solar cells based on anatase TiO2 nanoparticle/nanowire composites. The Journal of Physical Chemistry B, 2006, 110(32): 15932–15938

    Article  Google Scholar 

  46. Mekprasart W, Suphankij S, Tangcharoen T, et al. Modification of dye-sensitized solar cell working electrode using TiO2 nanoparticle/N-doped TiO2 nanofiber composites. physica status solidi (a), 2014, 211(8): 1745–1751

    Article  Google Scholar 

  47. Bai Y, Yu H, Li Z, et al. In situ growth of a ZnO nanowire network within a TiO2 nanoparticle film for enhanced dye-sensitized solar cell performance. Advanced Materials, 2012, 24(43): 5850–5856

    Article  Google Scholar 

  48. Hu A, Cheng C, Li X, et al. Two novel hierarchical homogeneous nanoarchitectures of TiO2 nanorods branched and P25-coated TiO2 nanotube arrays and their photocurrent performances. Nanoscale Research Letters, 2011, 6(1): 91 (6 pages)

    Article  Google Scholar 

  49. Zhang Q J, Sun C H, Yan J, et al. Perpendicular rutile nanosheets on anatase nanofibers: Heterostructured TiO2 nanocomposites via a mild solvothermal method. Solid State Sciences, 2010, 12(7): 1274–1277

    Article  Google Scholar 

  50. Lin C M, Chang Y C, Yao J, et al. Multi-step hydrothermally synthesized TiO2 nanoforests and its application to dye-sensitized solar cells. Materials Chemistry and Physics, 2012, 135(2–3): 723–727

    Article  Google Scholar 

  51. Ko S H, Lee D, Kang H W, et al. Nanoforest of hydrothermally grown hierarchical ZnO nanowires for a high efficiency dyesensitized solar cell. Nano Letters, 2011, 11(2): 666–671

    Article  Google Scholar 

  52. Ho W, Yu J C, Lee S. Synthesis of hierarchical nanoporous Fdoped TiO2 spheres with visible light photocatalytic activity. Chemical Communications, 2006, (10): 1115–1117

    Article  Google Scholar 

  53. Ye M, Zheng D, Lv M, et al. Hierarchically structured nanotubes for highly efficient dye-sensitized solar cells. Advanced Materials, 2013, 25(22): 3039–3044

    Article  Google Scholar 

  54. Kim Y J, Lee M H, Kim H J, et al. Formation of highly efficient dye-sensitized solar cells by hierarchical pore generation with nanoporous TiO2 spheres. Advanced Materials, 2009, 21(36): 3668–3673

    Article  Google Scholar 

  55. Tu L, Pan H, Xie H, et al. Study on the fabrication and photovoltaic property of TiO2 mesoporous microspheres. Solid State Sciences, 2012, 14(5): 616–621

    Article  Google Scholar 

  56. Fan K, Peng T, Chen J, et al. A simple preparation method for quasi-solid-state flexible dye-sensitized solar cells by using sea urchin-like anatase TiO2 microspheres. Journal of Power Sources, 2013, 222: 38–44

    Article  Google Scholar 

  57. Wu D, Wang Y, Dong H, et al. Hierarchical TiO2 microspheres comprised of anatase nanospindles for improved electron transport in dye-sensitized solar cells. Nanoscale, 2013, 5(1): 324–330

    Article  Google Scholar 

  58. Zhang H, Han Y, Liu X, et al. Anatase TiO2 microspheres with exposed mirror-like plane {001} facets for high performance dyesensitized solar cells (DSSCs). Chemical Communications, 2010, 46(44): 8395–8397

    Article  Google Scholar 

  59. Yan K, Qiu Y, Chen W, et al. A double layered photoanode made of highly crystalline TiO2 nanooctahedra and agglutinated mesoporous TiO2 microspheres for high efficiency dye sensitized solar cells. Energy & Environmental Science, 2011, 4(6): 2168–2176

    Article  Google Scholar 

  60. Liao J Y, Lei B X, Kuang D B, et al. Tri-functional hierarchical TiO2 spheres consisting of anatase nanorods and nanoparticles for high efficiency dye-sensitized solar cells. Energy & Environmental Science, 2011, 4(10): 4079–4085

    Article  Google Scholar 

  61. Peng J, Tseng C, Vittal R, et al. Mesoporous anatase-TiO2 spheres consisting of nanosheets of exposed (001)-facets for [Co(byp)3]2+/3+ based dye-sensitized solar cells. Nano Energy, 2016, 22: 136–148

    Article  Google Scholar 

  62. Zhang Z, Li X, Wang C, et al. ZnO hollow nanofibers: Fabrication from facile single capillary electrospinning and applications in gas sensors. The Journal of Physical Chemistry C, 2009, 113(45): 19397–19403

    Article  Google Scholar 

  63. Kim I D, Hong J M, Lee B H, et al. Dye-sensitized solar cells using network structure of electrospun ZnO nanofiber mats. Applied Physics Letters, 2007, 91(16): 163109 (3 pages)

    Article  Google Scholar 

  64. Sun X W, Chen J, Song J L, et al. Ligand capping effect for dye solar cells with a CdSe quantum dot sensitized ZnO nanorod photoanode. Optics Express, 2010, 18(2): 1296–1301

    Article  Google Scholar 

  65. Quintana M, Edvinsson T, Hagfeldt A, et al. Comparison of dyesensitized ZnO and TiO2 solar cells: Studies of charge transport and carrier lifetime. The Journal of Physical Chemistry C, 2007, 111(2): 1035–1041

    Article  Google Scholar 

  66. Park K, Zhang Q, Garcia B B, et al. Effect of an ultrathin TiO2 layer coated on submicrometer-sized ZnO nanocrystallite aggregates by atomic layer deposition on the performance of dyesensitized solar cells. Advanced Materials, 2010, 22(21): 2329–2332

    Article  Google Scholar 

  67. Fei C, Tian J, Wang Y, et al. Improved charge generation and collection in dye-sensitized solar cells with modified photoanode surface. Nano Energy, 2014, 10: 353–362

    Article  Google Scholar 

  68. Le Viet A, Jose R, Reddy M V, et al. Nb2O5 photoelectrodes for dye-sensitized solar cells: Choice of the polymorph. The Journal of Physical Chemistry C, 2010, 114(49): 21795–21800

    Article  Google Scholar 

  69. Palomares E, Clifford J N, Haque S A, et al. Slow charge recombination in dye-sensitised solar cells (DSSC) using Al2O3 coated nanoporous TiO2 films. Chemical Communications, 2002,(14): 1464–1465

    Article  Google Scholar 

  70. Palomares E, Clifford J N, Haque S A, et al. Control of charge recombination dynamics in dye sensitized solar cells by the use of conformally deposited metal oxide blocking layers. Journal of the American Chemical Society, 2003, 125(2): 475–482

    Article  Google Scholar 

  71. Niu H, Zhang S, Ma Q, et al. Dye-sensitized solar cells based on flower-shaped a-Fe2O3 as a photoanode and reduced graphene oxide-polyaniline composite as a counter electrode. RSC Advances, 2013, 3(38): 17228–17235

    Article  Google Scholar 

  72. Wang J, Jin E M, Park J Y, et al. Increases in solar conversion efficiencies of the ZrO2 nanofiber-doped TiO2 photoelectrode for dye-sensitized solar cells. Nanoscale Research Letters, 2012, 7(1): 98 (4 pages)

    Article  Google Scholar 

  73. Yu H, Bai Y, Zong X, et al. Cubic CeO2 nanoparticles as mirrorlike scattering layers for efficient light harvesting in dye-sensitized solar cells. Chemical Communications, 2012, 48(59): 7386–7388

    Article  Google Scholar 

  74. Li W, Jin G, Hu H, et al. Phosphotungstic acid and WO3 incorporated TiO2 thin films as novel photoanodes in dyesensitized solar cells. Electrochimica Acta, 2015, 153: 499–507

    Article  Google Scholar 

  75. Jiang Q, Gao J, Yi L, et al. Enhanced performance of dyesensitized solar cells based on P25/Ta2O5 composite films. Applied Physics A: Materials Science & Processing, 2016, 122: 442

    Article  Google Scholar 

  76. Li Y, Guo W, Hao H, et al. Enhancing photoelectrical performance of dye-sensitized solar cell by doping SrTiO3: Sm3+@SiO2 core–shell nanoparticles in the photoanode. Electrochimica Acta, 2015, 173: 656–664

    Article  Google Scholar 

  77. Zhang H, He B, Tang Q. Enhanced light harvesting of TiO2/La0.95Tb0.05PO4 photoanodes for dye-sensitized solar cells. Materials Chemistry and Physics, 2016, 173: 340–346

    Article  Google Scholar 

  78. Hod I, Shalom M, Tachan Z, et al. SrTiO3 recombinationinhibiting barrier layer for type II dye-sensitized solar cells. The Journal of Physical Chemistry C, 2010, 114(21): 10015–10018

    Article  Google Scholar 

  79. Tan B, Toman E, Li Y, et al. Zinc stannate (Zn2SnO4) dyesensitized solar cells. Journal of the American Chemical Society, 2007, 129(14): 4162–4163

    Article  Google Scholar 

  80. Huang X W, Shen P, Feng X M, et al. Efficient TiO2 nanoparticles/nanorods composite electrodes for dye-sensitized solar cells. Nano, 2012, 7(2): 1250010 (9 pages)

    Article  Google Scholar 

  81. Lee T Y, Alegaonkar P S, Yoo J B. Fabrication of dye sensitized solar cell using TiO2 coated carbon nanotubes. Thin Solid Films, 2007, 515(12): 5131–5135

    Article  Google Scholar 

  82. Xiang Z, Zhou X, Wan G, et al. Improving energy conversion efficiency of dye-sensitized solar cells by modifying TiO2 photoanodes with nitrogen-reduced graphene oxide. ACS Sustainable Chemistry & Engineering, 2014, 2(5): 1234–1240

    Article  Google Scholar 

  83. Fang X, Li M, Guo K, et al. Improved properties of dye-sensitized solar cells by incorporation of graphene into the photoelectrodes. Electrochimica Acta, 2012, 65: 174–178

    Article  Google Scholar 

  84. Yen C Y, Lin Y F, Liao S H, et al. Preparation and properties of a carbon nanotube-based nanocomposite photoanode for dye-sensitized solar cells. Nanotechnology, 2008, 19(37): 375305

    Article  Google Scholar 

  85. Kongkanand A, Domínguez R M, Kamat P V. Single wall carbon nanotube scaffolds for photoelectrochemical solar cells. Capture and transport of photogenerated electrons. Nano Letters, 2007, 7(3): 676–680

    Article  Google Scholar 

  86. Xue Y, Liu J, Chen H, et al. Nitrogen-doped graphene foams as metal-free counter electrodes in high-performance dye-sensitized solar cells. Angewandte Chemie International Edition, 2012, 51(48): 12124–12127

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tong Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Fang, J., Liu, Y. et al. Progress in nanostructured photoanodes for dye-sensitized solar cells. Front. Mater. Sci. 10, 225–237 (2016). https://doi.org/10.1007/s11706-016-0341-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11706-016-0341-0

Keywords

Navigation