Skip to main content
Log in

The Effect of Microstructure and Pre-strain on the Change in Apparent Young’s Modulus of a Dual-Phase Steel

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The elastic recovery in dual-phase (DP) steels is not a linear process and changes with plastic deformation. The level of change in the apparent Young’s modulus has been reported to depend on material composition and microstructure, but most previous experimental studies were limited to industrial DP steels and led to contradicting results. This work represents a first fundamental study that investigates the separate and combined effect of phase volume fraction and hardness on the change in apparent Young’s modulus in DP steel. A common automotive DP steel (DP780) is heat treated to obtain seven different combinations of martensite and ferrite volume fraction and hardness while keeping the chemical composition as well as the shape of the martensite and ferrite phases unchanged. Loading-unloading tests were performed to analyze the chord modulus at various levels of pre-strain. The results suggest that the point of saturation of the chord modulus with pre-strain depends on the morphology of the microstructure, occurring earlier for microstructures consisting of ferrite grains surrounded by martensite laths. It is further revealed that the reduction of the apparent Young’s modulus, which is the difference between the material’s initial Young’s modulus and the chord modulus, increases with martensite hardness if the martensite volume fraction is kept constant. A higher martensite volume fraction initially elevates the reduction of the apparent Young’s modulus. After a critical volume fraction of martensite phase of 35%, a decrease in apparent Young’s modulus reduction was observed. A comparison of the plastic unloading strain suggests that the mechanisms leading to a reduction in apparent Young’s modulus are strongest for the microstructure consisting of 35% martensite volume fraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. B. Chongthairungruang, V. Uthaisangsuk, S. Suranuntchai, and S. Jirathearanat, Springback Prediction in Sheet Metal Forming of High Strength Steels, Mater. Des., 2013, 50, p 253–266

    Article  Google Scholar 

  2. E. Pavlina, M.-G. Lee, and F. Barlat, Observations on the Nonlinear Unloading Behavior of Advanced High Strength Steels, Metall. Mater. Trans. A, 2015, 46, p 18–22

    Article  Google Scholar 

  3. R. Cobo, M. Pla, R. Hernández, J. A. Benito, Analysis of the Decrease of the Apparent Young’s Modulus of Advanced High Strength Steels and its Effect in Bending Simulations. in IDDRG 2009 International Conference. pp. 109–117 (2009)

  4. L. Sun and R.H. Wagoner, Complex Unloading Behavior: Nature of the Deformation and its Consistent Constitutive Representation, Int. J. Plast., 2011, 27, p 1126–1144

    Article  Google Scholar 

  5. R.M. Cleveland and A.K. Ghosh, Inelastic Effects on Springback in Metals, Int. J. Plast., 2002, 18, p 769–785

    Article  Google Scholar 

  6. H. Kim, C. Kim, F. Barlat, E. Pavlina, and M.-G. Lee, Nonlinear Elastic Behaviors of Low and High Strength Steels in Unloading and Reloading, Mater. Sci. Eng. A, 2013, 562, p 161–171

    Article  Google Scholar 

  7. P.-A. Eggertsen and K. Mattiasson, On Constitutive Modeling for Springback analysis, Int. J. Mech. Sci., 2010, 52, p 804–818

    Article  Google Scholar 

  8. H. Lim, M.G. Lee, J.H. Sung, J.H. Kim, and R.H. Wagoner, Time-Dependent Springback of Advanced High Strength Steels, Int. J. Plast., 2012, 29, p 42–59

    Article  Google Scholar 

  9. L. Taylor, J. Cao, A.P. Karafillis, and M.C. Boyce, Numerical Simulations of Sheet-Metal Forming, J. Mater. Sci. Technol., 1995, 50, p 168–179

    Article  Google Scholar 

  10. B. Chongthairungruang, V. Uthaisangsuk, S. Suranuntchai, and S. Jirathearanat, Experimental and Numerical Investigation of Springback Effect for Advanced High Strength Dual Phase Steel, Mater. Des., 2012, 39, p 318–328

    Article  Google Scholar 

  11. A. Abvabi, J. Mendiguren, A. Kupke, B. Rolfe, and M. Weiss, Evolution of Elastic Modulus in Roll Forming, Int. J. Mater. Form., 2017, 10(3), p 463–471

    Article  Google Scholar 

  12. H. Kim, M. Kimchi, Numerical Modeling for Springback Predictions by Considering the Variations of Elastic Modulus in Stamping Advanced High-Strength Steels (AHSS). 1159–66 (2011)

  13. X. Yang, C. Choi, N.K. Sever, and T. Altan, Prediction of Springback in Air-Bending of Advanced High Strength Steel (DP780) Considering Young's Modulus Variation and with a Piecewise Hardening Function, Int. J. Mech. Sci., 2016, 105, p 266–272

    Article  Google Scholar 

  14. A. Govik, R. Rentmeester, and L. Nilsson, A Study of the Unloading Behaviour of Dual Phase Steel, Mater. Sci. Eng. A, 2014, 602, p 119–126

    Article  Google Scholar 

  15. F. Yoshida, T. Uemori, and K. Fujiwara, Elastic–Plastic Behavior of Steel Sheets Under In-Plane Cyclic Tension–Compression at Large Strain, Int. J. Plast., 2002, 18, p 633–659

    Article  Google Scholar 

  16. B.S. Levy, C.J. Van Tyne, Y.H. Moon, C. Mikalsen, The Effective Unloading Modulus for Automotive Sheet Steels. SAE World Congress (2006)

  17. L. Zhonghua and G. Haicheng, Bauschinger Effect and Residual Phase Stresses in Two Ductile-Phase Steels: Part I. The Influence of Phase Stresses on the Bauschinger Effect, Metall Mater Trans A, 1990, 21, p 717–724

    Article  Google Scholar 

  18. L. Zhonghua and G. Haicheng, Bauschinger Effect and Residual Phase Stresses in Two Ductile-Phase Steels: Part II. The Effect of Microstructure and Mechanical Properties of the Constituent Phases on Bauschinger Effect and Residual Phase Stresses, Metall. Trans. A, 1990, 21, p 725–732

    Article  Google Scholar 

  19. Z. Cong, N. Jia, X. Sun, Y. Ren, J. Almer, and Y. Wang, Stress and Strain Partitioning of Ferrite and Martensite During Deformation, Metall. Mater. Trans. A, 2009, 40, p 1383–1387

    Article  Google Scholar 

  20. D.A. Korzekwa, D.K. Matlock, and G. Krauss, Dislocation Substructure as a Function of Strain in a Dual-Phase Steel, Metall. Mater. Trans. A., 1984, 15, p 1221–1228

    Article  Google Scholar 

  21. L. Luo and A.K. Ghosh, Anglais Elastic and Inelastic Recovery After Plastic Deformation of DQSK Steel Sheet, Trans. Am. Soc. Mech. Eng. J. Eng. Mater. Technol., 2003, 125, p 237–246

    Article  Google Scholar 

  22. R. Perez, J.A. Benito, and J.M. Prado, Study of the Inelastic Response of TRIP Steels after Plastic Deformation, ISIJ Int, 2005, 45, p 1925–1933

    Article  Google Scholar 

  23. J. Benito, J. Jorba, J. Manero, and A. Roca, Change of Young’s Modulus of Cold-Deformed Pure Iron in a Tensile Test, Metall. Mater. Trans. A, 2005, 36, p 3317–3324

    Article  Google Scholar 

  24. E.J. Pavlina, C. Lin, J. Mendiguren, B.F. Rolfe, and M. Weiss, Effects of Microstructure on the Variation of the Unloading Behavior of DP780 Steels, J. Mater. Eng. Perform., 2015, 24, p 3737–3745

    Article  Google Scholar 

  25. Q. Han, A. Asgari, P.D. Hodgson, and N. Stanford, Strain Partitioning in Dual-Phase Steels Containing Tempered Martensite, Mater. Sci. Eng. A, 2014, 611, p 90–99

    Article  Google Scholar 

  26. V.H. Baltazar Hernandez, S.K. Panda, M.L. Kuntz, and Y. Zhou, Nanoindentation and Microstructure Analysis of Resistance Spot Welded Dual Phase Steel, Mater. Lett., 2010, 64, p 207–210

    Article  Google Scholar 

  27. V.H. Baltazar Hernandez, S.K. Panda, Y. Okita, and N.Y. Zhou, A Study on Heat Affected Zone Softening in Resistance Spot Welded Dual Phase Steel by Nanoindentation, J. Mater. Sci., 2009, 45, p 1638–1647

    Article  Google Scholar 

  28. J. Kadkhodapour, S. Schmauder, D. Raabe, S. Ziaei-Rad, U. Weber, and M. Calcagnotto, Experimental and Numerical Study on Geometrically Necessary Dislocations and Non-homogeneous Mechanical Properties of the Ferrite Phase in Dual Phase Steels, Acta Mater., 2011, 59, p 4387–4394

    Article  Google Scholar 

  29. J. Becker, X. Cheng, and E. Hornbogen, Dualphasen-Stähle mit erhöhter Festigkeit und Verformbarkeit, Mater. Sci. Technol., 1981, 12, p 301–308

    Google Scholar 

  30. P. Movahed, S. Kolahgar, S.P.H. Marashi, M. Pouranvari, and N. Parvin, The Effect of Intercritical Heat Treatment Temperature on the Tensile Properties and Work Hardening Behavior of Ferrite–Martensite Dual Phase Steel Sheets, Mater. Sci. Eng. A, 2009, 518, p 1–6

    Article  Google Scholar 

  31. A.A. Sayed and S. Kheirandish, Affect of the Tempering Temperature on the Microstructure and Mechanical Properties of Dual Phase Steels, Mater. Sci. Eng. A , 2012, 532, p 21–25

    Article  Google Scholar 

  32. ASTM, Standard Test Method for Determining Volume Fraction by Systematic Manual Point Count. E562-02 (2011)

  33. ASTM, Standard Test Method for Dynamic Young’s Modulus, Shear Modulus, and Poisson’s Ratio by Impulse Excitation of Vibration. E1876-09 (2009)

  34. T.S. Kenkyujo, Journal POST-YIELD (Large strain) MEASUREMENT STRAIN GAUGES series YEF/YF/YHF 2016 (2016)

  35. B.C. De Cooman, J.G. Speer, J. Fundam. Steel Prod Phys. Metall. (2011)

  36. H. Bhadeshia and R. Honeycombe, Steels: Microstructure and Properties, Butterworth-Heinemann, Burlington, 2011

    Google Scholar 

  37. D.A. Korzekwa, D.K. Matlock, and G. Krauss, Dislocation Substructure as a Function of Strain in a Dual-Phase Steel, Metall. Trans., 1984, 15, p 1221

    Article  Google Scholar 

  38. W.-G. Jiang, J.-J. Su, and X.-Q. Feng, Effect of Surface Roughness on Nanoindentation Test of Thin Films, Eng. Fract. Mech., 2008, 75, p 4965–4972

    Article  Google Scholar 

  39. L. Chen, A. Ahadi, J. Zhou, and J.-E. Ståhl, Modeling Effect of Surface Roughness on Nanoindentation Tests, Proced. CIRP, 2013, 8, p 334–339

    Article  Google Scholar 

  40. N.J. Wittridge and R.D. Knutsen, A Microtexture Based Analysis of the Surface Roughening Behaviour of an Aluminium Alloy During Tensile Deformation, Mater. Sci. Eng. A, 1999, 269, p 205–216

    Article  Google Scholar 

  41. T. Ohmura, T. Hara, and K. Tsuzaki, Evaluation of Temper Softening Behavior of Fe–C Binary Martensitic Steels by Nanoindentation, Scripta Mater., 2003, 49, p 1157–1162

    Article  Google Scholar 

  42. N. Zaafarani, D. Raabe, R.N. Singh, F. Roters, and S. Zaefferer, Three-Dimensional Investigation of the Texture and Microstructure Below a Nanoindent in a Cu Single Crystal Using 3D EBSD and Crystal Plasticity Finite Element Simulations, Acta Mater., 2006, 54, p 1863–1876

    Article  Google Scholar 

  43. M. Weiss, A. Kupke, P.Y. Manach, L. Galdos, and P.D. Hodgson, On the Bauschinger Effect in Dual Phase Steel at High Levels of Strain, Mater. Sci. Eng. A, 2015, 643, p 127–136

    Article  Google Scholar 

  44. Y. Tomita, Effect of Morphology of Second-Phase Martensite on Tensile Properties of Fe-0.1 C Dual Phase Steels, J Mater Sci, 1990, 25, p 5179–5184

    Article  Google Scholar 

  45. S. Sodjit and V. Uthaisangsuk, Microstructure Based Prediction of Strain Hardening Behavior of Dual Phase Steels, Mater. Des., 2012, 41, p 370–379

    Article  Google Scholar 

  46. G.R. Speich, A.J. Schwoeble, and G.P. Huffman, Tempering of Mn and Mn-Si-V Dual-Phase Steels, Metall. Mater. Trans. A, 1983, 14, p 1079–1087

    Article  Google Scholar 

  47. H.-C. Chen and G.-H. Cheng, Effect of Martensite Strength on the Tensile Strength of Dual Phase Steels, J. Mater. Sci., 1989, 24, p 1991–1994

    Article  Google Scholar 

  48. P.D. Haaland, J. Exp. Des. Biotechnol. 105 (1989)

  49. Y. Estrin and H. Mecking, A Unified Phenomenological Description of Work Hardening and Creep Based on One-Parameter Models, Acta Metall., 1984, 32, p 57–70

    Article  Google Scholar 

  50. M. Erdogan and R. Priestner, Effect of Martensite Content, Its Dispersion, and Epitaxial Ferrite Content on Bauschinger Behaviour of Dual Phase Steel, Mater. Sci. Technol., 2002, 18, p 369–376

    Article  Google Scholar 

  51. Y. Bergström, Y. Granbom, and D. Sterkenburg, A Dislocation-Based Theory for the Deformation Hardening Behavior of DP Steels: Impact of Martensite Content and Ferrite Grain Size, J. Metall., 2010, 2010, p 647198

  52. A. Granato and K. Lücke, Theory of Mechanical Damping Due to Dislocations, J. Appl. Phys., 1956, 27, p 583–593

    Article  Google Scholar 

  53. A. Goel, R.K. Ray, and G.S. Murty, Bauschinger Effect in a Dual-Phase Steel, Scripta Metall., 1983, 17, p 375–380

    Article  Google Scholar 

Download references

Acknowledgments

The authors appreciate the financial support of the Australian Research Council (ARC Linkage Grant LP120100111). The authors further would like to thank Emeritus Professor J.L. Duncan for his assistance in writing this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kupke.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kupke, A., Hodgson, P.D. & Weiss, M. The Effect of Microstructure and Pre-strain on the Change in Apparent Young’s Modulus of a Dual-Phase Steel. J. of Materi Eng and Perform 26, 3387–3398 (2017). https://doi.org/10.1007/s11665-017-2754-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-017-2754-z

Keywords

Navigation