Skip to main content
Log in

Effects of Microstructure on the Variation of the Unloading Behavior of DP780 Steels

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The nonlinear unloading behavior of three different commercial dual-phase steels (DP780 grade equivalent) was examined. These steels exhibited small variations in chemical composition (0.07 to 0.10 mass percent carbon) and martensite volume fraction (0.23 to 0.28), and they demonstrated similar hardening behavior. Uniaxial loading-unloading-loading tests were conducted at room temperature and quasi-static strain rates between engineering strains of 0.5 and 8%. Steel microstructures were examined using electron backscatter diffraction and nanoindentation techniques. The microplastic component of the unloading strain exhibited no dependence on the martensite volume fraction or the ferrite grain size within the small range encountered in this investigations. Instead, the magnitude of the microplastic component of the unloading strain increased as the strength ratio between the martensite and ferrite phases increased. Correspondingly, the apparent unloading modulus, or chord modulus, exhibited a greater reduction for equivalent increments of strain hardening as the strength ratio increased. These results suggest that springback can be reduced in structures containing two ductile phases if the strength ratio between the harder and softer phases is reduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A. Col, Investigation on Press Forming Scatter Origin, Proceedings of the 6th International Conference on Material Forming, ESAFORM ‘03, 2003, p 183–186

  2. K.S. Choi, W.N. Liu, X. Sun, M.A. Khaleel, and J.R. Fekete, Influence of Manufacturing Processes and Microstructures on the Performance and Manufacturability of Advanced High Strength Steels, J. Eng. Mater.-T. ASME, 2009, vol. 131, p 041205

  3. R. Sohmshetty, R. Ramachandra, A. Bhimaraddi, and Z. Cedrix Xia, DP590 GI Mechanical Property Variability and Structural Response CAE Studies, SAE Technical Paper, 2009-01-0799

  4. T. de Souza and B.F. Rolfe, Characterising Material and Process Variation Effects on Springback Robustness for Semi-cylindrical Sheet Metal Forming Processes, Int. J. Mech. Sci., 2010, 52, p 1756–1766

    Article  Google Scholar 

  5. T. de Souza and B.F. Rolfe, Understanding Robustness of Springback in High Strength Steels, Int. J. Mech. Sci., 2013, 68, p 236–245

    Article  Google Scholar 

  6. P. Chen and M. Koc, Simulation of springback variation in forming of advanced high strength steels, J. Mater. Process. Technol., 2007, 190, p 189–198

    Article  Google Scholar 

  7. P. Chen, M. Koc, and M.L. Wenner, Experimental Investigation of Springback Variation in Forming of High Strength Steels, J. Manuf. Sci. Eng., 2008, 130, p 041006–041009

    Article  Google Scholar 

  8. F. Morestin, M. Boivin, and C. Silva, Elasto Plastic Formulation Using a Kinematic Hardening Model for Springback Analysis in Sheet Metal Forming, J. Mater. Process. Technol., 1996, 56, p 619–630

    Article  Google Scholar 

  9. F. Morestin and M. Boivin, On the Necessity of Taking into Account the Variation in the Young Modulus with Plastic Strain in Elastic-Plastic Software, Nucl. Eng. Des., 1996, 162, p 107–116

    Article  Google Scholar 

  10. K. Yamaguchi, H. Adachi, and N. Takakura, Effects of Plastic Strain and Strain Path on Young’s Modulus of Sheet Metals, Met. Mater. Int., 1998, 4, p 420–445

    Google Scholar 

  11. F. Yoshida, T. Uemori, and K. Fujiwara, Elastic-Plastic Behavior of Steel Sheets Under In-plane Cyclic Tension-Compression at Large Strain, Int. J. Plast., 2002, 18, p 633–659

    Article  Google Scholar 

  12. R.M. Cleveland and A.K. Ghosh, Inelastic Effects on Springback in Metals, Int. J. Plast, 2002, 18, p 769–785

    Article  Google Scholar 

  13. L. Luo and A.K. Ghosh, Elastic and Inelastic Recovery after Plastic Deformation of DQSK Steel Sheet, J. Eng. Mater.-T ASME, 2003, 125, p 237–246

    Article  Google Scholar 

  14. M. Yang, Y. Akiyama, and T. Sasaki, Evaluation of Change in Material Properties Due to Plastic Deformation, J. Mater. Process. Technol., 2004, 151, p 232–236

    Article  Google Scholar 

  15. R. Pérez, J.A. Benito, and J.M. Prado, Study of the Inelastic Response of TRIP Steels After Plastic Deformation, ISIJ Int., 2005, 45, p 1925–1933

    Article  Google Scholar 

  16. B.S. Levy, C.J. Van Tyne, Y.H. Moon, and C. Mikalsen, The Effective Unloading Modulus for Automotive Sheet Steels, SAE Technical Paper, 2006-01-0146

  17. D. Fei and P. Hodgson, Experimental and Numerical Studies of Springback in Air V-bending Process for Cold Rolled TRIP Steels, Nucl. Eng. Des., 2006, 236, p 1847–1851

    Article  Google Scholar 

  18. E.J. Pavlina, B.S. Levy, C.J. Van Tyne, S.O. Kwon, and Y.H. Moon, The Unloading Modulus of AKDQ Steel After Uniaxial and Near Plane-Strain Plastic Deformation, Int. J. Mod. Phys. B, 2008, 22, p 6070–6075

    Article  Google Scholar 

  19. P.A. Eggertsen and K. Mattiasson, On the Modelling of the Bending-Unbending Behaviour for Accurate Springback Predictions, Int. J. Mech. Sci., 2009, 51, p 547–563

    Article  Google Scholar 

  20. H.Y. Yu, Variation of Elastic Modulus During Plastic Deformation and Its Influence on Springback, Mater. Des., 2009, 30, p 846–850

    Article  Google Scholar 

  21. P.A. Eggertsen and K. Mattiasson, On the Modeling of the Unloading Modulus for Metal Sheets, Int. J. Mater. Form., 2010, 3, p 127–130

    Article  Google Scholar 

  22. L. Sun and R.H. Wagoner, Complex Unloading Behavior: Nature of the Deformation Its Consistent Constitutive Representation, Int. J. Plast., 2011, 27, p 1126–1144

    Article  Google Scholar 

  23. H. Kim, C. Kim, F. Barlat, E. Pavlina, and M.-G. Lee, Nonlinear Elastic Behaviors of Low and High Strength Steels in Unloading and Reloading, Mater. Sci. Eng. A, 2013, 562, p 161–171

    Article  Google Scholar 

  24. A. Govik, R. Rentmeester, and L. Nilsson, A Study of the Unloading Behaviour of Dual Phase Steel, Mater. Sci. Eng. A, 2014, 602, p 119–126

    Article  Google Scholar 

  25. J. Mendiguren, J.J. Trujillo, F. Cortés, and L. Galdos, An Extended Elastic Law to Represent Non-linear Elastic Behaviour: Application in Computational Metal Forming, Int. J. Mech. Sci., 2013, 77, p 57–64

    Article  Google Scholar 

  26. Y.P. Korkolis, N. Deng, and T. Kuwabara, Biaxial Unloading and Springback Behavior of Dual-Phase DP590 Steel Using Cruciform Specimens, Numisheet 2014, AIP Conf. Proc., 2013, 1567, p 700–704

    Article  Google Scholar 

  27. E.J. Pavlina, M.-G. Lee, and F. Barlat, Observations on the Nonlinear Unloading Behavior of Advanced High Strength Steels, Metall. Mater. Trans. A, 2015, 46, p 18–22

    Article  Google Scholar 

  28. J. Mendiguren, F. Cortés, X. Gómez, and L. Galdos, Elastic Behaviour Characterisation of TRIP 700 Steel by Means of Loading-Unloading Tests, Mater. Sci. Eng. A, 2015, 634, p 147–152

    Article  Google Scholar 

  29. H. Mecking and U.F. Kocks, Kinetics of Flow and Strain-Hardening, Acta Metall., 1981, 29, p 1865–1875

    Article  Google Scholar 

  30. G.E. Dieter, Mechanical Metallurgy, 3rd ed., McGraw-Hill, New York, 1986, p 140

    Google Scholar 

  31. L. Zhongua and G. Haicheng, Bauschinger Effect and Residual Phase Stresses in Two Ductile-Phase Steels: Part I. The Influence of Phase Stresses on the Bauschinger Effect, Metall. Trans. A, 1990, 21, p 717–724

    Article  Google Scholar 

  32. L. Zhongua and G. Haicheng, Bauschinger Effect and Residual Phase Stresses in Two Ductile-Phase Steels: Part II. The Effect of Microstructure and Mechanical Properties of the Constituent Phases on Bauschinger Effect and Residual Phase Stresses, Metall. Trans. A, 1990, 21, p 725–732

    Article  Google Scholar 

  33. S. Sriram, C. Wong, M. Huang, B. Yan, and D. Urban, Formability Characterization of a New Generation of High Strength Steels, Report No. 0012, American Iron and Steel Institute Technology Roadmap Program Office, Pittsburgh, PA, 2003

  34. Q. Han, A. Asgari, P.D. Hodgson, and N. Stanford, Strain Partitioning in Dual Phase Steels Containing Tempered Martensite, Mater. Sci. Eng. A, 2014, 611, p 90–99

    Article  Google Scholar 

  35. P.R. Rios, J.R.C. Guimarães, and K.K. Chawla, Modelling the Stress-Strain Curves of Dual-Phase Steels, Scr. Metall., 1981, 15, p 899–904

    Article  Google Scholar 

  36. L. Duprez, B.C. DeCooman, and N. Akdut, High-Temperature Stress and Strain Partitioning in Duplex Stainless Steel, Z. Metallk., 2002, 93, p 236–243

    Article  Google Scholar 

  37. B.M. Hance, Ph.D. Dissertation, University of Pittsburgh, 2005

  38. M.F. Ashby, Deformation of Plastically Non-homogeneous Materials, Philos. Mag., 1970, 21, p 399–424

    Article  Google Scholar 

  39. Standard Test Methods for Tension Testing of Metallic Materials, ASTM E8/8M-11, Annual Book of ASTM Standards, vol. 3.01, American Society for Testing and Materials, West Conshohocken, Pennsylvania

  40. R.G. Davies, Edge Cracking in High Strength Steels, J. App. Metalworking, 1983, 2, p 293–299

    Article  Google Scholar 

  41. P.M. Rice and R.E. Stoller, Correlation of Nanoindentation and Conventional Mechanical Property Measurements, Materials Research Society Symposium—Proceedings, 2001, vol. 649, p Q7.11.1–Q7.11.6

  42. R.G. Davies, Influence of Martensite Composition and Content on the Properties of Dual Phase Steels, Metall. Trans. A, 1978, 9, p 671–679

    Article  Google Scholar 

  43. P. Mencin, C.J. Van Tyne, and B.S. Levy, A Method for Measuring the Hardness of the Surface Layer on Hot Forging Dies Using a Nanoindenter, J. Mater. Eng. Perform., 2009, 18, p 1067–1072

    Article  Google Scholar 

  44. G. Krauss, Martensitic Transformation, Structure and Properties in Hardenable Steels, Hardenability Concepts with Applications to Steel, D.V. Doane and J.S. Kirkaldy, Ed., AIME, 1978, p 229–248

  45. E.J. Pavlina and C.J. Van Tyne, Correlation of Yield Strength and Tensile Strength with Hardness for Steels, J. Mater. Eng. Perform., 2008, 17, p 888–893

    Article  Google Scholar 

  46. K. Hasegawa, K. Kawamura, T. Urabe, and Y. Hosoya, Effects of Microstructure on Stretch-Flange-Formability of 980 MPa Grade Cold-Rolled Ultra High Strength Steel Sheets, ISIJ Int., 2004, 44, p 603–609

    Article  Google Scholar 

Download references

Acknowledgments

The authors appreciate the financial support of the Australian Research Council (ARC Linkage Grant - LP120100111) and of Wuhan Iron and Steel Co. (WISCO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Weiss.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavlina, E.J., Lin, C., Mendiguren, J. et al. Effects of Microstructure on the Variation of the Unloading Behavior of DP780 Steels. J. of Materi Eng and Perform 24, 3737–3745 (2015). https://doi.org/10.1007/s11665-015-1671-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-015-1671-2

Keywords

Navigation