Skip to main content
Log in

High Temperature Formability Prediction of Dual Phase Brass Using Phenomenological and Physical Constitutive Models

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Characterizing the high temperature flow behavior of a lead bearing duplex brass in a wide range of forming temperatures (673-1073 K) and strain rates (0.001-0.1 s−1) has been conducted in the present work. In order to establish the constitutive equations, two major modeling procedures, phenomenological (the Original Johnson-Cook and the Arrhenius-type) and physically based (the modified Zerilli-Armstrong) models, have been employed. The capability and accuracy of each model has been assessed via standard statistical parameters such as average absolute relative error and correlation coefficient. The comparative and comprehensive study of the flow behavior indicated that the accuracy of the phenomenological models was strongly dependent on the range of the testing temperatures and the corresponding mechanism which operate under the specified deformation conditions. It has been indicated that by limiting the temperature range a more precise Q-value is reached, which positively influences the accuracy of the Arrhenius-type model. In contrast, the modified Zerilli-Armstrong model was capable to overcome these limitations and properly considers the physical characteristics including dislocation dynamics and thermal activation to develop the materials constants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. C.R. Brooks, Heat Treatment, Structure, and Properties of Nonferrous Alloys, American Society for Metals, Metals Park, 1982

    Google Scholar 

  2. D. Padmavardhani and Y.V.R. Prasad, Characterization of Hot Deformation Behavior of Brasses Using Processing Maps: Part I. α Brass, Met. Trans., 1991, V22A, p 2993

    Article  Google Scholar 

  3. N. Haghdadi, A. Zarei-Hanzaki, and H.R. Abedi, The Flow Behavior Modeling of Cast A356 Aluminum Alloy at Elevated Temperatures Considering the Effect of Strain, Mater. Sci. Eng. A, 2012, 535, p 252–257

    Article  Google Scholar 

  4. N.S. Reddy, High Temperature Deformation Behavior of Ti-6Al-4V Alloy with an Equiaxed Microstructure: A Neural Networks Analysis, Met. Mater. Int., 2008, 14, p 213

    Article  Google Scholar 

  5. M. Abo-Elkhier, Modeling of High-Temperature Deformation of Commercial Pure Aluminum (1050), J. Mater. Eng. Perform., 2004, 13, p 241

    Article  Google Scholar 

  6. Y.C. Lin and X.-M. Chen, A Critical Review of Experimental Results and Constitutive Descriptions for Metals and Alloys in Hot Working, Mater. Des., 2011, 32, p 1733

    Article  Google Scholar 

  7. R. Bhattacharya, Y.J. Lan, B.P. Wynne, B. Davis, and W.M. Rainforth, Constitutive Equations of Flow Stress of Magnesium AZ31 Under Dynamically Recrystallizing Conditions, J. Mater. Process. Technol., 2014, 214, p 1408

    Article  Google Scholar 

  8. G.R Johnson, W.H. Cook, A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures, Proceedings of the 7th International Symposium on Ballistics, vol. 21, International Ballistics Committee, The Hague, Netherlands, 1983, p 541-547

  9. R. Liang and A.S. Khan, A Critical Review of Experimental Results and Constitutive Models for BCC and FCC Metals Over a Wide Range of Strain Rates and Temperatures, Int. J. Plast, 1999, 15, p 963

    Article  Google Scholar 

  10. Y.C. Lin, Q.F. Li, Y.C. Xia, and L.T. Li, A Phenomenological Constitutive Model for High Temperature Flow Stress Prediction of Al-Cu-Mg Alloy, Mater. Sci. Eng. A, 2012, 534, p 654–662

    Article  Google Scholar 

  11. C.M. Sellars and W.J. McTegart, On the Mechanism of Hot Deformation, Acta Metall., 1966, 14, p 1136

    Article  Google Scholar 

  12. F.A. Slooff, J. Zhou, J. Duszczyk, and L. Katgerman, Constitutive Analysis of Wrought Magnesium Alloy Mg-Al4-Zn1, Scr. Mater., 2007, 57, p 759

    Article  Google Scholar 

  13. Z. Zeng, S. Jonsson, and Y. Zhang, Constitutive Equations for Pure Titanium at Elevated Temperatures, Mater. Sci. Eng. A, 2009, 505, p 116

    Article  Google Scholar 

  14. Y.C. Lin, M.-S. Chen, and J. Zhong, Effect of Temperature and Strain Rate on the Compressive Deformation Behavior of 42CrMo Steel, J. Mater. Process. Technol., 2008, 205, p 308

    Article  Google Scholar 

  15. S. Mandal, V. Rakesh, P.V. Sivaprasad, S. Venugopal, and K.V. Kasiviswanathan, Constitutive Equations to Predict High Temperature Flow Stress in a Ti-Modified Austenitic Stainless Steel, Mater. Sci. Eng. A, 2009, 500, p 114

    Article  Google Scholar 

  16. A. Etaati, K. Dehghani, G.R. Ebrahimi, and H. Wang, Predicting the Flow Stress Behavior of Ni-42.5Ti-3Cu During Hot Deformation Using Constitutive Equations, Met. Mater. Int., 2013, 19, p 5–9

    Article  Google Scholar 

  17. R.K. Oruganti and K.P. Rao, Flow Stress Modeling for Copper under Changing Process Conditions, Met. Mater., 1998, 4, p 472–476

    Google Scholar 

  18. G. Ji, G. Yang, L. Li, and Q. Li, Modeling Constitutive Relationship of Cu-0.4 Mg Alloy During Hot Deformation, J. Mater. Eng. Perform., 2014, 23, p 1770

    Article  Google Scholar 

  19. D. Samantaray, S. Mandal, U. Borah, A.K. Bhaduri, and P.V. Sivaprasad, A Thermo-viscoplastic Constitutive Model to Predict Elevated-Temperature Flow Behaviour in a Titanium-Modified Austenitic Stainless Steel, Mater. Sci. Eng. A, 2009, 526, p 1–6

    Article  Google Scholar 

  20. J. Li, F. Li, J. Cai, R. Wang, Z. Yuan, and G. Ji, Comparative Investigation on the Modified Zerilli-Armstrong Model and Arrhenius-Type Model to Predict the Elevated-Temperature Flow Behaviour of 7050 Aluminium Alloy, Comput. Mater. Sci., 2013, 71, p 56

    Article  Google Scholar 

  21. F.J. Zerilli and R.W. Armstrong, Dislocation Mechanics Based Constitutive Relations for Material Dynamics Calculations, J. Appl. Phys., 1987, 61, p 1816

    Article  Google Scholar 

  22. A. He, G. Xie, H. Zhang, and X. Wang, A Modified Zerilli-Armstrong Constitutive Model to Predict Hot Deformation Behavior of 20CrMo Alloy Steel, Mater. Des., 2014, 56, p 122

    Article  Google Scholar 

  23. D. Samantaray, S. Mandal, and A.K. Bhaduri, A Comparative Study on Johnson Cook, Modified Zerilli-Armstrong and Arrhenius-Type Constitutive Models to Predict Elevated Temperature Flow Behaviour in Modified 9Cr-1Mo Steel, Comput. Mater. Sci., 2009, 47, p 568–576

    Article  Google Scholar 

  24. G. Ji, F. Li, Q. Li, H. Li, and Z. Li, A Comparative Study on Arrhenius-Type Constitutive Model and Artificial Neural Network Model to Predict High-Temperature Deformation Behaviour in Aermet100 Steel, Mater. Sci. Eng. A, 2011, 528, p 4774

    Article  Google Scholar 

  25. H.-Y. Li, X.-F. Wang, D.-D. Wei, J.-D. Hu, and Y.-H. Li, A Comparative Study on Modified Zerilli-Armstrong, Arrhenius-Type and Artificial Neural Network Models to Predict High-Temperature Deformation Behavior in T24 Steel, Mater. Sci. Eng. A, 2012, 536, p 216

    Article  Google Scholar 

  26. Y.C. Lin and X.-M. Chen, A Combined Johnson-Cook and Zerilli-Armstrong Model for Hot Compressed Typical High-Strength Alloy Steel, Comput. Mater. Sci., 2010, 49, p 628

    Article  Google Scholar 

  27. Y.C. Lin, Y.-C. Xia, X.-M. Chen, and M.-S. Chen, Constitutive Descriptions for Hot Compressed 2124-T851 Aluminum Alloy Over a Wide Range of Temperature and Strain Rate, Comput. Mater. Sci., 2010, 50, p 227

    Article  Google Scholar 

  28. R. Ebrahimi and A. Najafizadeh, A New Method for Evaluation of Friction in Bulk Metal Forming, J. Mater. Process. Technol., 2004, 152, p 136–143

    Article  Google Scholar 

  29. H. Monajati, M. Jahazi, S. Yue, and A.K. Taheri, Deformation Characteristics of Isothermally Forged UDIMET 720, Nickel-Base Superalloy, 2005, 36, p 895

    Google Scholar 

  30. Y.P. Li, E. Onodera, H. Matsumoto, and A. Chiba, Correcting the Stress-Strain Curve in Hot Compression Process to High Strain Level, Metall. Mater. Trans. A, 2009, 40, p 982

    Article  Google Scholar 

  31. E. Farghadany, A. Zarei-Hanzaki, H.R. Abedi, D. Dietrich, and T. Lampke, The Strain Accommodation in Ti-28Nb-12Ta-5Zr Alloy During Warm Deformation, Mater. Sci. Eng. A, 2014, 592, p 57

    Article  Google Scholar 

  32. H.R. Abedi, A. Zarei-Hanzaki, S.M. Fatemi-Varzaneh, and A.A. Roostaei, The Semi-solid Tensile Deformation Behavior of Wrought AZ31 Magnesium Alloy, Mater. Des., 2010, 31, p 4386

    Article  Google Scholar 

  33. D. Padmavardhani, Characterization of Hot Deformation Behavior of Brasses Using Processing Maps: Part II. β Brass and α/β Brass, Metall. Trans. A, 1991, 22, p 2993

    Article  Google Scholar 

  34. M.R. Rokni, A. Zarei-Hanzaki, A.A. Roostaei, and A. Abolhasani, Constitutive Base Analysis of a 7075 Aluminum Alloy During Hot Compression Testing, Mater. Des., 2011, 32, p 4955

    Article  Google Scholar 

  35. A. Mirzaei, A. Zarei-Hanzaki, N. Haghdadi, and A. Marandi, Constitutive Description of High Temperature Flow Behavior of Sanicro-28 Super-Austenitic Stainless Steel, Mater. Sci. Eng. A, 2014, 589, p 76

    Article  Google Scholar 

  36. H. Yu, H. Yu, G. Min, S.S. Park, B.S. You, and Y.M. Kim, Strain-Dependent Constitutive Analysis of Hot Deformation and Hot Workability of T4-Treated ZK60 Magnesium Alloy, Met. Mater. Int., 2013, 19, p 651

    Article  Google Scholar 

  37. X. Ma, W. Zeng, F. Tian, Y. Sun, and Y. Zhou, Modeling Constitutive Relationship of BT25 Titanium Alloy During Hot Deformation by Artificial Neural Network, J. Mater. Eng. Perform., 2011, 21, p 1591

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Zarei-Hanzaki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farabi, E., Zarei-Hanzaki, A. & Abedi, H.R. High Temperature Formability Prediction of Dual Phase Brass Using Phenomenological and Physical Constitutive Models. J. of Materi Eng and Perform 24, 209–220 (2015). https://doi.org/10.1007/s11665-014-1254-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-014-1254-7

Keywords

Navigation