Skip to main content
Log in

Grain Growth and β-Mg17Al12 Intermetallic Phase Dissolution During Heat Treatment and Its Impact on Deformation Behavior of AZ80 Mg-Alloy

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Microstructure evolution after solutionizing and ageing treatment of cast AZ80 Mg alloy were investigated using optical and scanning electron microscopy. Effect of these treatments on grain size, β-Mg17Al12 intermetallic phase, mechanical behavior, and flow asymmetry were investigated. The initial continuous network of β-phase found to be reduced after solutionizing. The dissolution of β-phase and simultaneous grain growth are found to be interrelated. Mechanical properties including yield strength, maximum strength (ultimate compressive strength), and maximum strain attainable in compressive found almost twice than the corresponding values obtained in tension. The asymmetry in compressive and tensile properties is found to decrease with grain size at certain solutionizing duration. Particular heat treatment found to offer best combination of tensile compressive flow properties in AZ80 Mg alloy. Aging under certain conditions found to minimize the strength asymmetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A. Jager, P. Lukac, V. Gartnerova, J. Haloda, and M. Dopita, Influence of Annealing on the Microstructure of Commercial Mg Alloy AZ31 After Mechanical Forming, Mater. Sci. Eng. A, 2006, 432, p 20–25

    Article  Google Scholar 

  2. Q. Guo, H.G. Yan, H. Zhang, Z.H. Chen, and Z.F. Wang, Behaviour of AZ31 Magnesium Alloy During Compression at Elevated Temperatures, Mater. Sci. Technol., 2005, 21, p 1349–1354

    Article  Google Scholar 

  3. T. Mohri, M. Mabuchi, N. Nakamura, T. Asahina, H. Iwasaki, T. Aizawa, and K. Higashi, Microstructural Evolution and Superplasticity of Rolled Mg-9Al-1Zn, Mater. Sci. Eng. A, 2000, 290, p 139–144

    Article  Google Scholar 

  4. R. Grimes, M. Jackson, B. Moorhouse, and R. Dashwood, The Manufacture of Superplastic Mangnesium Alloy Sheet, Materialwissenschaft und Werkstofftechnik, 2008, 39, p 4–5

    Article  Google Scholar 

  5. K. Yu, W. Li, J. Zhao, Z. Ma, and R. Wang, Plastic Deformation Behaviors of a Mg-Ce-Zn-Zr Alloy, Scr. Mater., 2003, 48, p 1319–1323

    Article  Google Scholar 

  6. M.A. Gharghouri, G.C. Weatherly, and J.D. Embury, The Interaction of Twins and Precipitates in a Mg-7.7 at.% Al Alloy, Philos. Mag., 1998, 78, p 1137–1149

    Article  Google Scholar 

  7. Q. Wang, Y. Zhang, Y. Sun, J. Chen, and J. Cui, Study of the Effect of Microstructure on the Anisotropy of AZ31 Magnesium Alloy Thin Sheet, Mater. Sci. Forum, 2009, 610-613, p 742–745

    Article  Google Scholar 

  8. J. Bohlen, P. Dobron, J. Swiostek, D. Letzig, F. Chmelık, P. Lukac, and K.U. Kainer, On the Influence of the Grain Size and Solute Content on the AE Response of Magnesium Alloys Tested in Tension and Compression, Mater. Sci. Eng. A, 2007, 462, p 302–306

    Article  Google Scholar 

  9. M.R. Barnett, Z. Keshavarz, A.G. Beer, and D. Atwell, Influence of Grain Size on the Compressive Deformation of Wrought Mg-3Al-1Zn, Acta Mater., 2004, 52, p 5093–5103

    Article  Google Scholar 

  10. L. Jiang and J.J. Jonas, Effect of Twinning on the Flow Behavior During Strain Path Reversals in Two Mg (+Al, Zn, Mn) Alloys, Scr. Mater., 2008, 58, p 803–806

    Article  Google Scholar 

  11. R.H. Wagoner, X.Y. Lou, M. Lib, and S.R. Agnewc, Forming Behavior of Magnesium Sheet, J. Mater. Process. Technol., 2006, 177, p 483–485

    Article  Google Scholar 

  12. M.-X. Zhang and P.M. Kelly, Crystallography of Mg17Al12 Precipitates in AZ91D Alloy, Scripta Mater., 2003, 48, p 647–652

    Article  Google Scholar 

  13. W.J. Lai, Y.Y. Li, Y.F. Hsu, S. Trong, and W.H. Wang, Aging Behaviour and Precipitate Morphologies in Mg-7.7Al-0.5Zn-0.3Mn (wt.%) Alloy, J. Alloys Compd., 2009, 476, p 118–124

    Article  Google Scholar 

  14. E.O. Hall, The Deformation and Ageing of Mild Steel: III, Discussion of Results, Proc. Phys. Soc., 1951, B64, p 747–753

    Article  Google Scholar 

  15. N.J. Petch, J. Iron Steel Inst., 1953, 174, p 25–28

    Google Scholar 

  16. Y. Chino, K. Kimura, M. Hakamadaa, and M. Mabuchi, Mechanical Anisotropy Due to Twinning in an Extruded AZ31 Mg Alloy, Mater. Sci. Eng. A, 2008, 485, p 311–317

    Article  Google Scholar 

  17. S. Kleiner and P.J. Uggowitzer, Mechanical Anisotropy of Extruded Mg-6% Al-1% Zn Alloy, Mater. Sci. Eng. A, 2004, 379, p 258–263

    Article  Google Scholar 

  18. C. Zener, quoted by C. S. Smith, Trans. Met. Soc. AIME 1948, 175, p 15–51

  19. E. Hornbogen, U. Koster, Recrystallization of Metallic Materials, F. Haessner, Ed., Riederer, Stuttgart, 1978, p. 159

  20. P.K. Bakshi and B.P. Kashyap, Grain Growth in the Two-Phase Al-Cu Alloys, J. Mater. Sci., 1994, 29, p 2063–2070

    Article  Google Scholar 

  21. N. Stanford and M.R. Barnett, Effect of Particles on the Formation of Deformation Twins in a Magnesium-Based Alloy, Mater. Sci. Eng. A, 2009, 516, p 226–234

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Palai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palai, P., Prabhu, N., Hodgson, P.D. et al. Grain Growth and β-Mg17Al12 Intermetallic Phase Dissolution During Heat Treatment and Its Impact on Deformation Behavior of AZ80 Mg-Alloy. J. of Materi Eng and Perform 23, 77–82 (2014). https://doi.org/10.1007/s11665-013-0722-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-013-0722-9

Keywords

Navigation