Skip to main content
Log in

Donor–Acceptor–Donor Modular Small Organic Molecules Based on the Naphthalene Diimide Acceptor Unit for Solution-Processable Photovoltaic Devices

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Two novel solution-processable small organic molecules, 4,9-bis(4-(diphenylamino)phenyl)-2,7-dioctylbenzo[3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone (S6) and 4,9-bis(benzo[b]thiophen-2-yl)-2,7-dioctylbenzo[3,8]phenanthroline-1,3,6,8 (2H,7H)-tetraone (S7), have been successfully designed, synthesized, characterized, and applied in solution-processable photovoltaic devices. S6 and S7 contain a common electron-accepting moiety, naphthalene diimide (NDI), with different electron-donating moieties, triphenylamine (S6) and benzothiophene (S7), and are based on a donor–acceptor–donor structure. S7 was isolated as black, rod-shaped crystals. Its triclinic structure was determined by single crystal x-ray diffraction (XRD): space group \(P\bar{1}\), Z = 2, a = 9.434(5) Å, b = 14.460(7) Å, c = 15.359(8) Å, α = 67.256(9) degrees, β = 80.356(11) degrees, γ = 76.618(10) degrees, at 150 Kelvin (K), R = 0.073. Ultraviolet–visible absorption spectra revealed that use of triphenylamine donor functionality with the NDI acceptor unit resulted in an enhanced intramolecular charge transfer (ICT) transition and reduction of the optical band gap compared with the benzothiophene analogue. Solution-processable inverted bulk heterojunction devices with the structure indium tin oxide/zinc oxide (30 nm)/active layer/molybdenum trioxide (10 nm)/silver (100 nm) were fabricated with S6 and S7 as donors and (6,6)-phenyl C70-butyric acid methyl ester (PC70BM) as acceptor. Power conversion efficiencies of 0.22% for S6/PC70BM and 0.10% for S7/PC70BM were achieved for the preliminary photovoltaic devices under simulated AM 1.5 illumination (100 mW cm−2). This paper reports donor–acceptor–donor modular small organic molecules, with NDI as central accepting unit, that have been screened for use in solution-processable inverted photovoltaic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Günes, H. Neugebauer, and N.S. Sariciftci, Chem. Rev. 107, 1324 (2007).

    Article  Google Scholar 

  2. B.C. Thompson and J.M.J. Frechet, Angew. Chem. Int. Ed. 47, 58 (2008).

    Article  Google Scholar 

  3. C.W. Tang, Appl. Phys. Lett. 48, 183 (1986).

    Article  Google Scholar 

  4. A. Facchetti, Chem. Mater. 23, 733 (2011).

    Article  Google Scholar 

  5. P.-L.T. Boudreault, A. Najari, and M. Leclerc, Chem. Mater. 23, 456 (2011).

    Article  Google Scholar 

  6. A. Gupta, S.E. Watkins, A.D. Scully, ThB Singh, G.J. Wilson, L.J. Rozanski, and R.A. Evans, Synth. Met. 161, 856 (2011).

    Article  Google Scholar 

  7. C.J. Brabec, S. Gowrisanker, J.J.M. Halls, D. Laird, S. Jia, and S.P. Williams, Adv. Mater. 22, 3839 (2010).

    Article  Google Scholar 

  8. D. Gendron and M. Leclerc, Energy Environ. Sci. 4, 1225 (2011).

    Article  Google Scholar 

  9. B. Walker, C. Kim, and T.-Q. Nguyen, Chem. Mater. 23, 470 (2011).

    Article  Google Scholar 

  10. Y. Li, Q. Guo, Z. Li, J. Pei, and W. Tian, Energy Environ. Sci. 3, 1427 (2010).

    Article  Google Scholar 

  11. J.E. Anthony, Chem. Mater. 23, 583 (2011).

    Article  Google Scholar 

  12. A. Mishra and P. Bäuerle, Angew. Chem. Int. Ed. 51, 2020 (2012).

    Article  Google Scholar 

  13. J. Huang, C. Zhan, X. Zhang, Y. Zhao, Z. Lu, H. Jia, B. Jiang, J. Ye, S. Zhang, A. Tang, Y. Liu, Q. Pei, and J. Yao, ACS Appl. Mater. Interfaces 5, 2033 (2013).

    Article  Google Scholar 

  14. S. Zhang, B. Jiang, C. Zhan, J. Huang, X. Zhang, H. Jia, A. Tang, L. Chen, and J. Yao, Chem. Asian J. 8, 2407 (2013).

    Article  Google Scholar 

  15. A. Tang, L. Li, Z. Lu, J. Huang, H. Jia, C. Zhan, Z. Tan, Y. Li, and J. Yao, J. Mater. Chem. A 1, 5747 (2013).

    Article  Google Scholar 

  16. J. Chen and Y. Cao, Acc. Chem. Res. 42, 1709 (2009).

    Article  Google Scholar 

  17. Y.-J. Cheng, S.-H. Yang, and C.-S. Hsu, Chem. Rev. 109, 5868 (2009).

    Article  Google Scholar 

  18. J. Zhou, X. Wan, Y. Liu, Y. Zuo, Z. Li, G. He, G. Long, W. Ni, C. Li, X. Su, and Y. Chen, J. Am. Chem. Soc. 134, 16345 (2012).

    Article  Google Scholar 

  19. N.M. Kronenberg, M. Deppisch, F. Wurthner, H.W.A. Lademann, K. Deing, and K. Meerholz, Chem. Commun. 48, 6489 (2008).

    Article  Google Scholar 

  20. A. Gupta, A. Ali, A. Bilic, M. Gao, K. Hegedus, B. Singh, S.E. Watkins, G.J. Wilson, U. Bach, and R.A. Evans, Chem. Commun. 48, 1889 (2012).

    Article  Google Scholar 

  21. A. Gupta, V. Armel, W. Xiang, G. Fanchini, S.E. Watkins, D.R. MacFarlane, U. Bach, and R.A. Evans, Tetrahedron 69, 3584 (2013).

    Article  Google Scholar 

  22. A. Gupta, A. Ali, B. Singh, A. Bilic, U. Bach, and R.A. Evans, Tetrahedron 38, 9440 (2012).

    Article  Google Scholar 

  23. R.J. Kumar, Q.I. Churches, J. Subbiah, A. Gupta, A. Ali, R.A. Evans, and A.B. Holmes, Chem. Commun. 49, 6552 (2013).

    Article  Google Scholar 

  24. A.B. Tamayo, X.-D. Dang, B. Walker, J. Seo, T. Kent, and T.-Q. Nguyen, Appl. Phys. Lett. 94, 103301 (2009).

    Article  Google Scholar 

  25. B. Walker, A.B. Tamayo, X.-D. Dang, P. Zalar, J.H. Seo, A. Garcia, M. Tantiwiwat, and T.-Q. Nguyen, Adv. Funct. Mater. 19, 1 (2009).

    Google Scholar 

  26. Z. Li, Q. Dong, Y. Li, B. Xu, M. Deng, J. Pei, J. Zhang, F. Chen, S. Wen, Y. Gao, and W. Tian, J. Mater. Chem. 21, 2159 (2011).

    Article  Google Scholar 

  27. Q. Shi, P. Cheng, Y. Li, and X. Zhan, Adv. Energy Mater. 2, 63 (2012).

    Article  Google Scholar 

  28. P.V. Bedworth, Y. Cai, A. Jen, and S.R. Marder, J. Org. Chem. 61, 2242 (1996).

    Article  Google Scholar 

  29. N. Tirelli, S. Amabile, C. Cellai, A. Pucci, L. Regoli, G. Ruggeri, and F. Ciardelli, Macromolecules 34, 2129 (2001).

    Article  Google Scholar 

  30. P.F. Xia, X.J. Feng, J. Lu, S.-W. Tsang, R. Movileanu, Y. Tao, and M.S. Wong, Adv. Mater. 20, 4810 (2008).

    Article  Google Scholar 

  31. S.V. Bhosale, C. Jani, and S. Langford, Chem. Soc. Rev. 37, 331 (2008).

    Article  Google Scholar 

  32. C.-C. Lin, M. Velusamy, H.-H. Chou, J.T. Lin, and P.-T. Chou, Tetrahedron 66, 8629 (2010).

    Article  Google Scholar 

  33. Y. Lin, Y. Li, and X. Zhan, Chem. Soc. Rev. 41, 4245 (2012).

    Article  Google Scholar 

  34. C.N. McEwen, R.G. McKay, and B.S. Larsen, Anal. Chem. 77, 7826 (2005).

    Article  Google Scholar 

  35. SHELXS97 and SHELXL97, Programs for the Refinement of Crystal Structures, University of Göttingen, Göttingen, Germany, 1997.

  36. SHELXTL, Version 6.12, Bruker Axs Inc., Madison, Wisconsin, 2001.

  37. I.J. Bruno, J.C. Cole, P.R. Edgington, M.K. Kessler, C.F. Macrae, P. McCabe, J. Pearson, and R. Taylor, Acta Crystallogr. Sect. B 58, 389 (2002).

    Article  Google Scholar 

  38. S.V. Bhosale, M.B. Kalyankar, S.V. Bhosale, S.J. Langford, E.F. Reid, and C.F. Hogan, New J. Chem. 33, 2409 (2009).

    Article  Google Scholar 

  39. G. Sarasqueta, K.R. Choudhury, J. Subbiah, and F. So, Adv. Funct. Mater. 21, 167 (2003).

    Article  Google Scholar 

  40. H. Tian, X. Yang, J. Cong, R. Chen, J. Liu, Y. Hao, A. Hagfeldt, and L. Sun, Chem. Commun. 41, 6288 (2009).

    Article  Google Scholar 

  41. G.A. Jeffrey, An Introduction to Hydrogen Bonding (New York: Oxford University, 1997).

    Google Scholar 

  42. G.R. Desiraju and T. Steiner, The Weak Hydrogen Bond (In Structural Chemistry and Biology: Oxford University, Chichester, 1999).

    Google Scholar 

  43. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, and D.J. Fox, Gaussian 09, Revision D.01 (Wallingford, CT: Gaussian Inc., 2013).

  44. F. Padinger, R.S. Rittberger, and N.S. Saricifti, Adv. Funct. Mater. 13, 85 (2003).

    Article  Google Scholar 

  45. J. Subbiah, K.R. Choudhury, S. Ellinger, J.R. Reynolds, and F. So, IEEE J. Sel. Top. Quantum Electron. 16, 1792 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

H.P. acknowledges the assistance of Dr. Jegadesan Subbiah from Bio21 Institute, University of Melbourne, VIC 3010, for providing support and guidance during the fabrication of OPV devices. S.V.B. acknowledges financial support from the Australian Research Council under a Future Fellowship Scheme (FT110100152) and the School of Applied Sciences (RMIT University) for the facilities. The CSIRO Materials Science and Engineering (CMSE) is acknowledged for providing support through a visiting fellow position (A.G.). A.B. thanks CSIRO for support through the Julius Career Award. Use of the NCI National Facility supercomputers at the ANU is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Akhil Gupta or Sheshanath V. Bhosale.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2409 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patil, H., Gupta, A., Bilic, A. et al. Donor–Acceptor–Donor Modular Small Organic Molecules Based on the Naphthalene Diimide Acceptor Unit for Solution-Processable Photovoltaic Devices. J. Electron. Mater. 43, 3243–3254 (2014). https://doi.org/10.1007/s11664-014-3243-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-3243-x

Keywords

Navigation