Skip to main content
Log in

Thermoelectric Properties of Two-Phase PbTe with Indium Inclusions

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The thermoelectric figure of merit (zT) can be increased by introduction of additional interfaces in the bulk to reduce the thermal conductivity. In this work, PbTe with a dispersed indium (In) phase was synthesized by a matrix encapsulation technique for different In concentrations. x-Ray diffraction analysis showed single-phase PbTe with In secondary phase. Rietveld analysis did not show In substitution at either the Pb or Te site, and this was further confirmed by room-temperature Raman data. Low-magnification (~1500×) scanning electron microscopy images showed micrometer-sized In dispersed throughout the PbTe matrix, while at high magnification (150,000×) an agglomeration of PbTe particles in the hot-pressed samples could be seen. The electrical resistivity (ρ) and Seebeck coefficient (S) were measured from 300 K to 723 K. Negative Seebeck values showed all the samples to be n-type. A systematic increase in resistivity and higher Seebeck coefficient values with increasing In content indicated the role of PbTe-In interfaces in the scattering of electrons. This was further confirmed by the thermal conductivity (κ), measured from 423 K to 723 K, where a greater reduction in the electronic as compared with the lattice contribution was found for In-added samples. It was found that, despite the high lattice mismatch at the PbTe-In interface, phonons were not scattered as effectively as electrons. The highest zT obtained was 0.78 at 723 K for the sample with the lowest In content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Z.H. Dughaish, Phys. B 322, 205 (2002).

    Article  Google Scholar 

  2. A.D. LaLonde, Y. Pei, and G.J. Snyder, Energy Environ. Sci. 4, 2090 (2011).

    Article  Google Scholar 

  3. Y. Pei, A.D. LaLonde, N.A. Heinz, and G.J. Snyder, Adv. Energy Mater. 2, 670 (2012).

    Article  Google Scholar 

  4. Y. Pei, H. Wang, Z.M. Gibbs, A.D. LaLonde, and G.J. Snyder, NPG Asia Mater. 4, e28 (2012).

    Article  Google Scholar 

  5. D.M. Rowe and V.S. Shukla, J. Appl. Phys. 52, 7421 (1981).

    Article  Google Scholar 

  6. Q. Meng, L. Wu, and Y. Zhu, Phys. Rev. B 87, 064102 (2013).

    Article  Google Scholar 

  7. J. He, J.R. Sootsman, S.N. Girard, J.C. Zheng, J. Wen, Y. Zhu, M.G. Kanatzidis, and V.P. Dravid, J. Am. Chem. Soc. 132, 8669 (2010).

    Article  Google Scholar 

  8. T. Ikeda, E.S. Toberer, V.A. Ravi, S.M. Haile, and G.J. Snyder, Proceedings of International Conference on Thermoelectrics (2007). doi:10.1109/ICT.2007.4569408.

  9. J.E. Douglas, C.S. Birkel, M. Miao, C.J. Torbet, D.D. Stucky, T.M. Pollock, and R. Seshadri, Appl. Phys. Lett. 101, 183902 (2012).

    Article  Google Scholar 

  10. J.R. Sootsman, R.J. Pcionek, H. Kong, C. Uher, and M.G. Kanatzidis, Chem. Mater. 18, 4993 (2006).

    Article  Google Scholar 

  11. F. Cerrina, R.R. Daniels, T. Zhao, and V. Fano, J. Vac. Sci. Technol. B 1, 1983 (570).

    Google Scholar 

  12. F. Cerrina, R.R. Daniels, and V. Fano, Appl. Phys. Lett. 43, 182 (1983).

    Article  Google Scholar 

  13. T. Roisnel and J. Rodriguez-Carvajal, Mater. Sci. Forum 118, 378 (2000).

    Google Scholar 

  14. P.C. Millett, R.P. Selvam, S. Bansal, and A. Saxena, Acta Mater. 53, 3671 (2005).

    Article  Google Scholar 

  15. Y. Wada and S. Nishimatsu, J. Electrochem. Soc. Solid State Tech. 125, 1499 (1978).

    Google Scholar 

  16. F.J. Humphreys and M. Hatherley, Recrystallisation and Related Annealing Phenomena, 2nd ed. (Oxford: Elsevier, 2004), pp. 309, 306.

  17. H. Wu, C. Cao, J. Si, T. Xu, H. Zhang, H. Wu, J. Chen, W. Shen, and N. Dai, J. Appl. Phys. 101, 103505 (2007).

    Article  Google Scholar 

  18. N. Romcevic, Z.V. Popovic, and D.R. Khokhlov, J. Phys.: Condens. Mater. 7, 5105 (1995).

    Google Scholar 

  19. A.K. Sood, R. Gupta, P. Metcalf, and J.M. Honig, Phys. Rev. B 65, 104430 (2002).

    Article  Google Scholar 

  20. S. Guo, Z. Du, and S. Dai, Phys. Stat. Sol. (B) 246, 2329 (2009).

    Article  Google Scholar 

  21. T.A. Smorodina and A.P. Tsuranov, JETP Lett. 34, 75 (1981).

    Google Scholar 

  22. Z. Dashevsky, S. Shusterman, M.P. Dariel, and I. Drabkin, J. Appl. Phys. 92, 1425 (2002).

    Article  Google Scholar 

  23. D.M. Freik, V.Ì. Boychuk, and L.I. Mezhylovsjka, Semicond. Phys. Quantum Electron. Optoelectron. 6, 454 (2003).

    Google Scholar 

  24. T. Su, X. Jia, H. Ma, J. Guo, Y. Jiang, N. Dong, L. Deng, X. Zhao, T. Zhu, and C. Wei, J. Alloys Compd. 468, 410 (2009).

    Article  Google Scholar 

  25. Y. Pei, X. Shi, A. LaLonde, H. Wang, L. Chen, and G.J. Snyder, Nature 473, 66 (2011).

    Article  Google Scholar 

  26. Ch. Papageorgiou, J. Giapintzkis, and Th. Kyrats, J. Electron. Mater. (2013). doi:10.1007/s11664-012-2469-8.

  27. F. Stern and W.D. Howard, Phys. Rev. 163, 816 (1967).

    Article  Google Scholar 

  28. F. Gather, C. Heiliger, and P.J. Klar, J. Phys. D: Condens. Mater. 23, 335301 (2011).

    Google Scholar 

  29. M. Guch, C.R. Sankar, J. Salvador, G. Meisner, and H. Kleinke, Sci. Adv. Mater. 3, 615 (2011).

    Article  Google Scholar 

  30. R. Dalven, J. Appl. Phys. 38, 1732 (1967).

    Article  Google Scholar 

  31. Y. Gelbstein, Z. Dashevsky, and M.P. Dariel, Phys. B 363, 196 (2005).

    Article  Google Scholar 

  32. Z. Dashevsky, R. Kreizman, and M.P. Dariel, J. Appl. Phys. 98, 094309 (2005).

    Article  Google Scholar 

  33. I.I. Fishchuk, Phys. Stat. Sol. (B) 196, K25 (1996).

    Article  Google Scholar 

  34. M. Bartkowiak and G.D. Mahan, Recent Trends in Thermoelectric Materials-II, Semiconductors & Semimetals (San Diego: Academic, 2001).

    Google Scholar 

  35. M.D. Losego, M.E. Grady, N.R. Sottos, D.G. Cahill, and P.V. Braun, Nat. Mater. 11, 502 (2012).

    Article  Google Scholar 

  36. A. Bali, E. Royanian, E. Bauer, P. Rogl, and R.C. Mallik, J. Appl. Phys. 113, 123707 (2013).

    Article  Google Scholar 

  37. M. Romcevic, N. Romcevic, D.R. Khokhlov, and I.I. Ivanchik, J. Phys. Condens. Mater. 12, 8737 (2000).

    Article  Google Scholar 

  38. A.H. Romero, M. Cardona, R.K. Kremer, R. Lauck, G. Siegle, J. Serrano, and X.C. Gonze, Phys. Rev. B 78, 224302 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramesh Chandra Mallik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bali, A., Kim, IH., Rogl, P. et al. Thermoelectric Properties of Two-Phase PbTe with Indium Inclusions. J. Electron. Mater. 43, 1630–1638 (2014). https://doi.org/10.1007/s11664-013-2819-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-013-2819-1

Keywords

Navigation