Skip to main content
Log in

Dissolution Model of Multiple Species: Leaching of Highly Soluble Minerals

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Dissolution of multi-species from a solid matrix is widely extended in different processes such as leaching of minerals; however, its modeling is often focused on a single species. A model for the simultaneous dissolution of soluble species was developed, which considers different solubilities and dissolution rates and considers that particle collapses when the rapidly soluble species is depleted. The collapsed matter is formed by inert material and a fraction of the soluble species with lower dissolution rate that has not dissolved yet. The model is applied to the leaching of a water-soluble mineral (caliche) with two soluble species dissolving simultaneously with different rates. Measured outlet concentrations of nitrate and magnesium were used to validate the model. Results showed that the model reproduced adequately the leaching of species with rapid and intermediate dissolution rate. Effect of the operating and kinetic parameters on the leaching process is also shown using the actual conditions of heap leaching for caliche mineral.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

A :

Cross-sectional area of reactor (m2)

\( C_{Sx} \) :

Solubility concentration of x-species (kg/m3)

\( C_{x} \) :

Concentration of x-species in reactor \( i \) (kg/m3)

\( C_{{x\left( {i - 1} \right)}} \) :

Concentration of x-species in previous reactor (kg/m3)

\( D \) :

Particle diameter (m)

\( {\mathfrak{D}} \) :

Diffusivity (m2/h)

\( H \) :

Initial reactor height (m)

\( H_{heap} \) :

Initial heap height (m)

\( h_{i} \) :

Height of reactor \( i \) (m)

\( k_{x} \) :

Mass transfer rate coefficient of x-species (m/h)

\( k_{B}^{*} \) :

Dissolution rate of collapsed material (1/h)

\( m_{B} \) :

Mass of B in the collapsed material per unit area (kg/m2)

\( N_{p} \) :

Number of particles

\( q \) :

Irrigation rate (m3/m2/h)

\( R \) :

Initial particle radius (m)

\( Re \) :

Dimensionless number Reynolds

\( r_{i} \) :

Particle radius in reactor \( i \) (m)

\( Sc \) :

Dimensionless number Schmidt

\( Sh \) :

Dimensionless number Sherwood

\( t \) :

Time (h)

\( V \) :

Volume of reactor (m3)

\( \alpha_{x} \) :

Mass fraction of x-species in caliche, kg of x/kg mineral

\( \varepsilon \) :

Mineral porosity

\( \varepsilon_{w} \) :

Water fraction

\( \rho \) :

Mineral density (kg/m3)

References

  1. M.E. Wadsworth: in Handbook of Separation Process Technology, R.W. Rouseau, ed., Wiley, New York, 1987, pp. 500-39.

  2. 2. R.W. Bartlett: Metall. Mater. Trans. B, 1997, vol. 28, pp. 529–45.

    Article  Google Scholar 

  3. 3. D. McBride, J.E. Gebhardt and M. Cross: Hydrometallurgy, 2012, vol. 113–114, pp. 98–108.

    Article  Google Scholar 

  4. 4. M.E. Mellado, M.P. Casanova, L.A. Cisternas and E.D. Gálvez: Comput. Chem. Eng., 2011, vol. 35, pp. 220–25.

    Article  Google Scholar 

  5. 5. G.A. Padilla, L.A. Cisternas and J.Y. Cueto: Miner. Eng., 2008, vol. 21, pp. 673–78.

    Article  Google Scholar 

  6. 6. J.Y. Trujillo, L.A. Cisternas, E.D. Gálvez and M.E. Mellado: Chem. Eng. Res. Des., 2014, vol. 92, pp. 308–17.

    Article  Google Scholar 

  7. L. Pokorny, I. Maturana, and W.H. Bortle: Kirk-Othmer Encycl. Chem. Technol., 2006, vol. 22, pp. 1–22.

    Google Scholar 

  8. USGS (U. S. Geological Survey), Minerals Information (Minerals Yearbook, Volume I.—Metals and Minerals, 2016), http://www.minerals.usgs.gov/minerals/pubs/commodity/myb/index.html. Accesed July 2016.

  9. A. Lauterbach: in Environmental Impact of Fertilizer on Soil and Water, R. Hall and W. Robarge, eds., American Chemical Society, Washington D.C., 2004, pp. 45–57.

  10. 10. A. Wheeler: Technical Report on the Aguas Blancas Property, Chile, Santiago, 2010.

    Google Scholar 

  11. 11. J.I. Ordóñez, L. Moreno, M.E. Mellado and L.A. Cisternas: Int. J. Miner. Process., 2014, vol. 126, pp. 10–17.

    Article  Google Scholar 

  12. 12. J.I. Ordóñez L. Moreno, E.D. Gálvez and L.A. Cisternas: Hydrometallurgy, 2013, vol. 139, pp. 79–87.

    Article  Google Scholar 

  13. 13. J.I. Ordóñez, L. Moreno, J.F. González and L.A. Cisternas: Hydrometallurgy, 2015, vol. 155, pp. 61–68.

    Article  Google Scholar 

  14. 14. M.A. Torres, G.E. Meruane, T.A. Graber, P.C. Gutiérrez, and M.E. Taboada: Hydrometallurgy, 2013, vol. 133, pp. 100–05.

    Article  Google Scholar 

  15. 15. J.A. Valencia, D.A. Méndez, J.Y. Cueto and L.A. Cisternas: Hydrometallurgy, 2008, vol. 90, pp. 103–14.

    Article  Google Scholar 

  16. 16. E.D. Gálvez, L. Moreno, M.E. Mellado, J.I. Ordóñez and L.A. Cisternas: Miner. Eng., 2012, vol. 33, pp. 46–53.

    Article  Google Scholar 

  17. 21. R.J. Roman, B.R. Benner and G.W. Becker: Soc. Min. Eng. Trans., 1974, vol. 256, pp. 247–52.

    Google Scholar 

  18. 22. J.C. Box and A.P. Prosser: Hydrometallurgy, 1986, vol. 16, pp. 77–92.

    Article  Google Scholar 

  19. 23. D. Ding, J. Song, Y. Ye, G. Li, H. Fu, N. Hu and Y. Wang: J. Radioanal. Nucl. Chem., 2013, vol. 298, pp. 1477–82.

    Article  Google Scholar 

  20. 17. D.G. Dixon and J.L. Hendrix: Metall. Trans. B, 1993, vol. 24, pp. 1087–1102.

    Article  Google Scholar 

  21. 18. D.G. Dixon and J.L. Hendrix: Metall. Trans. B, 1993, vol. 24, pp. 157–69.

    Article  Google Scholar 

  22. 24. G.A. Sheikhzadeh, M.A. Mehrabian, S.H. Mansouri and A. Sarrafi: Int. J. Heat Mass Transf., 2005, vol. 48, pp. 279–92.

    Article  Google Scholar 

  23. 25. C.R. Bennett, D. McBride, M. Cross and J.E. Gebhardt: Hydrometallurgy, 2012, vol. 127–128, pp. 150–61.

    Article  Google Scholar 

  24. 26. M.E. Mellado, L.A. Cisternas and E.D. Gálvez: Hydrometallurgy, 2009, vol. 95, pp. 33–38.

    Article  Google Scholar 

  25. 27. L.R.P. de Andrade Lima: Brazilian J. Chem. Eng., 2004, vol. 21, pp. 435–47.

    Article  Google Scholar 

  26. 19. S. Valdez, J.I. Ordóñez, L.A. Cisternas and L. Moreno: Brazilian J. Chem. Eng., 2016, vol. 33, pp. 105–14.

    Article  Google Scholar 

  27. 20. R.B. Bird, W.E. Stewart and E.N. Lightfoot: Transport Phenomena, John Wiley & Sons, New York, 2007.

    Google Scholar 

Download references

Acknowledgments

The authors thank CONICYT and the Regional Government of Antofagasta for their funding through the PAI program, Project Anillo ACT 1201.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier I. Ordóñez.

Additional information

Manuscript submitted June 4, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moreno, L., Ordóñez, J.I. & Cisternas, L.A. Dissolution Model of Multiple Species: Leaching of Highly Soluble Minerals. Metall Mater Trans B 48, 1817–1826 (2017). https://doi.org/10.1007/s11663-017-0936-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-017-0936-6

Keywords

Navigation