Skip to main content
Log in

Optical and Microstructural Origins of Thermomechanical Streaking Defects in Hot Extruded AA6060

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Thermomechanical streaking is a common optical surface defect that affects architectural 6xxx series aluminum extrusions, and can be cause for rejection of the product. AA6060 profiles were extruded at a range of ram speeds using a specialized die with internal geometry purposely designed to produce thermomechanical variation throughout the profile. Subsequently, the extrudates underwent an industrial anodization pretreatment process that revealed the presence of streaks throughout three designated regions. The optical appearance, microstructure and surface topography of streaked and surrounding regions of the extrudate surface were analyzed using colorimetry, electron backscattered diffraction, and optical profilometry. Differences in perceived lightness, roughness, and grain size were observed between streaked and surrounding regions. Changes in appearance of the surface directly correlated with the surface roughness, with rougher surfaces yielding an increase in the perceived lightness. The surface roughness was determined to be primarily dependent on the size and distribution of grain etching steps as related to the surface grain size. A difference in grain size in the regions surrounding the streaks was determined to be the microstructural origin of the visual defect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. 1. K.Karhaysen, A.L.Dons and T.Aukrust, Material Science Forum 1996, vol. 217-222, pp. 403-408.

    Article  Google Scholar 

  2. 2. H. Zhu, X. Zhang, M. J. Couper and A. K. Dahle, Materials Science Forum 2009, vol. 618 - 619, pp. 349-352.

    Article  Google Scholar 

  3. 3. R. Akeret, H. Bichsel, E. Schwall, E. Simon and M. Textor, Transactions of the Institute of Metal Finishing 1990, vol. 68, pp. 20-28.

    Article  CAS  Google Scholar 

  4. J.Walker, I.C Meng, Z.W. Chen, W.J Hayward, S. Chen, and J. Mainwaring: 5th Australasian Aluminium Extrusion Conference, Surfers Paradise, 2014.

  5. 5. George Vander Voort, Beatriz Suárez-Peña and Juan Asensio-Lozano, Microscopy and Microanalysis 2013, vol. 19, pp. 276-84.

    Article  CAS  Google Scholar 

  6. Y. Ma, X. Zhou, J. Wang, G. E. Thompson, W. Huang, J. O. Nilsson, M. Gustavsson and A. Crispin, Journal of The Electrochemical Society 2013, vol. 161, p. C312.

    Article  Google Scholar 

  7. 7. H. Zhu, X. Zhang, M. J. Couper and A. K. Dahle, Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science 2009, vol. 40, pp. 3264-3275.

    Article  CAS  Google Scholar 

  8. 8. T Hauge and K.F. Karhausen, Aluminum Extrusion 1998, vol. 3, pp. 32-37.

    Google Scholar 

  9. 9. A. J. Dowell, Trans IMF 1987, vol. 65, pp. 147 - 151.

    Article  CAS  Google Scholar 

  10. 10. X. Zhang, H. Zhu, A.K. Dahle and M.J. Couper, ET Seminar 2008, vol. 2, pp. 455 - 464.

    Google Scholar 

  11. José R Galvele, Corrosion Science 1981, vol. 21, pp. 551-579.

    Article  CAS  Google Scholar 

  12. C. Vargel: Corrosion of aluminium. (Elsevier, Boston, 2004).

    Book  Google Scholar 

  13. 12. E. V. Koroleva, G. E. Thompson, P. Skeldon and B. Noble, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 2007, vol. 463, pp. 1729-1748.

    Article  CAS  Google Scholar 

  14. 13. E.V Koroleva, G.E Thompson, P Skeldon and B Noble, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science 2007, vol. 463, pp. 1729-1748.

    Article  CAS  Google Scholar 

  15. Y.M. Wang, H.H. Kuo, and S. Kia: Plat. Surf. Finish., 2004, vol. 91, pp. 34–38+46.

  16. Y Ma, X Zhou, GE Thompson, J-O Nilsson, M Gustavsson, and A Crispin: Trans. IMF 2013, vol. 91, pp. 11-16.

    Article  CAS  Google Scholar 

  17. 16. H. Zhu, T. Wei, M. J. Couper and A. K. Dahle, JOM 2012, vol. 64, pp. 337-345.

    Article  CAS  Google Scholar 

  18. 17. H. Zhu, M. J. Couper and A. K. Dahle, High Temperature Materials and Processes 2012, vol. 31, pp. 105-111.

    CAS  Google Scholar 

  19. 18. Steven Babaniaris, Aiden Beer and Matthew R. Barnett, Light Metals 2017 2017, pp. 371-377.

    Google Scholar 

  20. Aluminium Extruders Council: Aluminium Extrusion Manual, The Aluminium Association, 1998.

  21. 20. F. J. Humphreys, Journal of Materials Science 2001, vol. 36, pp. 3833-3854.

    Article  CAS  Google Scholar 

  22. T. Kayser, B. Klusemann, H. G. Lambers, H. J. Maier and B. Svendsen, Materials Science and Engineering: A 2010, vol. 527, pp. 6568-6573.

    Article  Google Scholar 

  23. M. Schikorra, L. Donati, L. Tomesani and A. E. Tekkaya, J. Mech. Sci. Technol. 2007, vol. 21, pp. 1445-1451.

    Article  Google Scholar 

  24. T. Sheppard: Extrusion of Aluminium Alloys. (Springer, New York, 1999)

    Book  Google Scholar 

  25. L. Donati, A. Segatori, M. El Mehtedi and L. Tomesani: Int. J. Plast. 2013, vol. 46, pp. 70-81.

    Article  CAS  Google Scholar 

  26. H. Zhu, C.H. Caceres, X. Zhang, M. Couper, and A.K. Dahle: Mater. Sci. Forum, 2007, pp 341–44.

  27. 23. W. S. Mokrzycki and M. Tatol, Machine Graphics and Vision 2011, vol. 20, pp. 383-411.

    Google Scholar 

  28. 24. M. Yonehara, K. Kihara, Y. Kagawa, H. Isono and T. Sugibayashi, Keikinzoku/Journal of Japan Institute of Light Metals 2005, vol. 55, pp. 15-19.

    Article  CAS  Google Scholar 

  29. 25. M. Yonehara, T. Matsui, K. Kihara, H. Isono, A. Kijima and T. Sugibayashi, Materials Transactions 2004, vol. 45, pp. 1027-1032.

    Article  CAS  Google Scholar 

  30. R.S. Hunter and R.W. Harold: The Measurement of Appearance. Wiley, Hoboken 1987.

    Google Scholar 

Download references

Acknowledgments

The present study was carried out with the support of the Deakin Advanced Characterisation Facility. The authors gratefully acknowledge the insightful discussions with Professor Bevis Hutchinson, and also the financial support provided by the Australian Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Babaniaris.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted May 2, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babaniaris, S., Beer, A.G. & Barnett, M.R. Optical and Microstructural Origins of Thermomechanical Streaking Defects in Hot Extruded AA6060. Metall Mater Trans A 50, 5483–5493 (2019). https://doi.org/10.1007/s11661-019-05428-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05428-1

Navigation