Skip to main content
Log in

Tempering Reactions and Elemental Redistribution During Tempering of Martensitic Stainless Steels

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Tempering reactions in the martensite phase of Fe-13Cr-0.47C (mass pct) stainless steel and its Si- and Mn-added modifications were studied by correlative dilatometry and magnetic measurements. Tempering for 5 minutes was performed at sequentially higher temperatures up to 923 K (650 °C). Classical tempering reactions including the segregation of C atoms at defects, precipitation of M3C and Cr-rich carbides, and austenite decomposition were clearly identified. The formation of M3C carbides was partially and entirely suppressed by Mn and Si additions, respectively. Compared to low-alloy steels, the decomposition of retained austenite in stainless steels was delayed to temperatures above 823 K (550 °C). The latter occurred concurrently with the formation of Cr-rich carbides in the martensite. In addition, non-classical tempering reactions such as the partial dissolution of C clusters at temperatures above 573 K (300 °C) and the short-range diffusion of substitutional elements including Cr and Mn to C clusters and M3C carbides in the temperature range of 673 K to 823 K (400 °C to 550 °C) were identified based on the associated increase in the magnetization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. G.R. Speich and W.C. Leslie: Metall. Trans., 1972, vol. 3, pp. 1043–54.

    Article  Google Scholar 

  2. M. Kusunoki and S. Nagakura: J. Appl. Crystallogr., 1981, vol. 14, pp. 329–336.

    Article  Google Scholar 

  3. S. Murphy and A. Whiteman: Metall. Trans., 1970, vol. 1, pp. 843–848.

    Google Scholar 

  4. R. Dabrowski and J. Pacyna: Arch. Mater. Sci. Eng., 2007, vol. 28, p. 585–88.

    Google Scholar 

  5. C. Servant and G. Cizeron: Mater. Sci. Eng. A, 1989, vol. 117, pp. 175–89.

    Article  Google Scholar 

  6. Y. Ohmori and I. Tamura: Metall. Trans. A, 1992, vol. 23, pp. 2737–51.

    Article  Google Scholar 

  7. R.C. Thomson: Mater. Charact., 2000, vol. 44, pp. 219–33.

    Article  Google Scholar 

  8. L. Chang and G.D.W. Smith: J. Phys. Colloq., 1984, vol. 45, pp. C9–397.

    Google Scholar 

  9. P.C. Chen and P.G. Winchell: Metall. Trans. A, 1980, vol. 11, pp. 1333–1339.

    Article  Google Scholar 

  10. P.V. Morra, A.J. Böttger, and E.J. Mittemeijer: J. Therm. Anal. Calorim., 2001, vol. 64, pp. 905–14.

    Article  Google Scholar 

  11. T. Waterschoot, K. Verbeken, and B.C.D. Cooman: ISIJ Int., 2006, vol. 46, pp. 138–46.

    Article  Google Scholar 

  12. S.S.M. Tavares, D. Fruchart, S. Miraglia, and D. Laborie: J. Alloys Compd., 2000, vol. 312, pp. 307–14.

    Article  Google Scholar 

  13. B.A. Apaev: Phase Magnetic Analysis, Moscow: Matellurgiya, 1976.

    Google Scholar 

  14. R. Rahimi, R. Ritzenhoff, and H. Biermann, and J. Mola: in High Nitrogen Steels, 2014, 2014.

  15. J. Mola, G. Luan, D. Brochnow, O. Volkova, and J. Wu: Metall. Mater. Trans. A, 2017, vol. 48, pp. 5805–12.

    Article  Google Scholar 

  16. L. Cheng, C.M. Brakman, B.M. Korevaar, and E.J. Mittemeijer: Metall. Trans. A, 1988, vol. 19, pp. 2415–26.

    Article  Google Scholar 

  17. H.K.D.H. Bhadeshia and S.R. Honeycombe: in Steels (Third Edition), H.K.D.H. Bhadeshia and S.R. Honeycombe, eds., Butterworth-Heinemann, Oxford, 2006, pp. 183–208.

  18. A. Kwiatkowski da Silva, G. Leyson, M. Kuzmina, D. Ponge, M. Herbig, S. Sandlöbes, B. Gault, J. Neugebauer, and D. Raabe: Acta Mater., 2017, vol. 124, pp. 305–15.

    Article  Google Scholar 

  19. A.J. Ardell and P. Bellon: Curr. Opin. Solid State Mater. Sci., 2016, vol. 20, pp. 115–39.

    Article  Google Scholar 

  20. M.K. Miller: J. Mater. Sci., 2006, vol. 41, pp. 7808–13.

    Article  Google Scholar 

  21. C. Zhu, X.Y. Xiong, A. Cerezo, R. Hardwicke, G. Krauss, and G.D.W. Smith: Ultramicroscopy, 2007, vol. 107, pp. 808–12.

    Article  Google Scholar 

  22. C. Lerchbacher, S. Zinner, and H. Leitner: Metall. Mater. Trans. A, 2012, vol. 43, pp. 4989–98.

    Article  Google Scholar 

  23. A.J. Clarke, M.K. Miller, R.D. Field, D.R. Coughlin, P.J. Gibbs, K.D. Clarke, D.J. Alexander, K.A. Powers, P.A. Papin, and G. Krauss: Acta Mater., 2014, vol. 77, pp. 17–27.

    Article  Google Scholar 

  24. M. Maalekian: The Effects of Alloying Elements on Steels (I), Christian Doppler Laboratory for Early Stages of Precipitation, 2007.

  25. Q. Huang, C. Schröder, H. Biermann, O. Volkova, and J. Mola: Steel Res. Int., 2016, vol. 87, pp. 1082–94.

    Article  Google Scholar 

  26. M.K. Miller: Atom Probe Tomography: Analysis at the Atomic Level, Springer US, 2000.

    Book  Google Scholar 

  27. J. Mola, D. Chae, and B.C.D. Cooman: Metall. Mater. Trans. A, 2010, vol. 41, pp. 1429–40.

    Article  Google Scholar 

  28. R.A. Mesquita and H.J. Kestenbach: Solid State Phenom., 2011, vol. 172–174, pp. 414–9.

    Article  Google Scholar 

  29. I. Seki and K. Nagata: ISIJ Int., 2005, vol. 45, pp. 1789–94.

    Article  Google Scholar 

  30. J. Mola, G. Luan, Q. Huang, C. Schimpf, and D. Rafaja: Materialia, 2018, vol. 2, pp. 138–47.

    Article  Google Scholar 

  31. A. Bénéteau, E. Aeby-Gautier, G. Geandier, P. Weisbecker, A. Redjaïmia, and B. Appolaire: Acta Mater., 2014, vol. 81, pp. 30–40.

    Article  Google Scholar 

  32. F. Tariq and R.A. Baloch: in ICASE2013: Proceedings of the Third International Conference on Aerospace Science & Engineering, Institute of Space Technology, Pakistan, 2013.

  33. C.S. Roberts: Trans AIME, 1953, vol. 197, pp. 203–204.

    Google Scholar 

  34. D. Jain, D. Isheim, and D.N. Seidman: Metall. Mater. Trans. A, 2017, vol. 48, pp. 3205–19.

    Article  Google Scholar 

  35. L. Yuan, D. Ponge, J. Wittig, P. Choi, J.A. Jiménez, and D. Raabe: Acta Mater., 2012, vol. 60, pp. 2790–804.

    Article  Google Scholar 

  36. L. Morsdorf, C.C. Tasan, D. Ponge, and D. Raabe: Acta Mater., 2015, vol. 95, pp. 366–77.

    Article  Google Scholar 

  37. A.W. Cochardt, G. Schoek, and H. Wiedersich: Acta Metall., 1955, vol. 3, pp. 533–37.

    Article  Google Scholar 

  38. A. Vieweg, E. Povoden-Karadeniz, G. Ressel, P. Prevedel, T. Wojcik, F. Mendez-Martin, A. Stark, J. Keckes, and E. Kozeschnik: Mater. Des., 2017, vol. 136, pp. 214–22.

    Article  Google Scholar 

  39. J. Wilde, A. Cerezo, and G.D.W. Smith: Scr. Mater., 2000, vol. 43, pp. 39–48.

    Article  Google Scholar 

  40. M. Jung, S.-J. Lee, and Y.-K. Lee: Metall. Mater. Trans. A, 2009, vol. 40, pp. 551–9.

    Article  Google Scholar 

  41. L.J.E. Hofer: Nature of the Carbides of Iron, U.S. Department of the Interior, Bureau of Mines, Washington, D. C., 1966.

    Google Scholar 

  42. J. Crangle and G.M. Goodman: Proc. R. Soc. Lond. Ser. Math. Phys. Sci., 1971, vol. 321, pp. 477–91.

    Article  Google Scholar 

  43. N.I. Medvedeva, I.R. Shein, M.A. Konyaeva, and A.L. Ivanovskii: Phys. Met. Metallogr., 2008, vol. 105, pp. 568–73.

    Article  Google Scholar 

  44. A. Kagawa and T. Okamoto: Trans. Jpn. Inst. Met., 1979, vol. 20, pp. 659–66.

    Article  Google Scholar 

  45. C.G. Shull and M.K. Wilkinson: Phys. Rev., 1955, vol. 97, pp. 304–10.

    Article  Google Scholar 

  46. A.T. Aldred: Phys. Rev. B, 1976, vol. 14, pp. 219–27.

    Article  Google Scholar 

  47. T. Shigematsu: J. Phys. Soc. Jpn., 1974, vol. 37, pp. 940–5.

    Article  Google Scholar 

  48. G.P. Huffman, P.R. Errington, and R.M. Fisher: Phys. Status Solidi B, 1967, vol. 22, pp. 473–81.

    Article  Google Scholar 

  49. J.G. Speer, A.M. Streicher, D.K. Matlock, F. Rizzo, and G. Krauss: in Austenite Formation and Decomposition, 2003, pp. 505–22.

  50. F.G. Caballero, M.K. Miller, S.S. Babu, and C. Garcia-Mateo: Acta Mater., 2007, vol. 55, pp. 381–90.

    Article  Google Scholar 

  51. F.G. Caballero, M.K. Miller, C. Garcia-Mateo, C. Capdevila, and S.S. Babu: Acta Mater., 2008, vol. 56, pp. 188–99.

    Article  Google Scholar 

  52. Q. Huang, B.C.D. Cooman, H. Biermann, and J. Mola: Metall. Mater. Trans. A, 2016, vol. 47, pp. 1947–59.

    Article  Google Scholar 

  53. H. Yamauchi, H. Watanabe, Y. Suzuki, and H. Saito: J. Phys. Soc. Jpn., 1974, vol. 36, pp. 971–4.

    Article  Google Scholar 

  54. S. Reeh, D. Music, M. Ekholm, I.A. Abrikosov, and J.M. Schneider: Phys. Rev. B. 2013, vol. 87, art no. 224103.

    Article  Google Scholar 

  55. P. Gondi and R. Montanari: Phys. Status Solidi A, 1992, vol. 131, pp. 465–80.

    Article  Google Scholar 

  56. N.I. Medvedeva, D.C. Van Aken, and J.E. Medvedeva: J. Phys. Condens. Matter, 2011, vol. 23, p. 326003.

    Article  Google Scholar 

  57. S.S. Babu, K. Hono, and T. Sakurai: Metall. Mater. Trans. A, 1994, vol. 25, pp. 499–508.

    Article  Google Scholar 

  58. S.S. Babu, K. Hono, and T. Sakurai: Appl. Surf. Sci., 1993, vol. 67, pp. 321–7.

    Article  Google Scholar 

  59. R.C. Thomson and M.K. Miller: Acta Mater., 1998, vol. 46, pp. 2203–13.

    Article  Google Scholar 

  60. A. Inoue and T. Masumoto: Metall. Trans. A, 1980, vol. 11, pp. 739–47.

    Article  Google Scholar 

  61. J.P. Materkowski and G. Krauss: Metall. Trans. A, 1979, vol. 10, pp. 1643–51.

    Article  Google Scholar 

  62. A.J. Clarke, J.G. Speer, D.K. Matlock, F.C. Rizzo, D.V. Edmonds, and M.J. Santofimia: Scr. Mater., 2009, vol. 61, pp. 149–52.

    Article  Google Scholar 

  63. K.O. Findley, J. Hidalgo, R.M. Huizenga, and M.J. Santofimia: Mater. Des., 2017, vol. 117, pp. 248–56.

    Article  Google Scholar 

  64. J.G. Speer, E.D. Moor, and A.J. Clarke: Mater. Sci. Technol., 2015, vol. 31, pp. 3–9.

    Article  Google Scholar 

  65. Q. Huang, O. Volkova, B.D. Cooman, H. Biermann, and J. Mola: IOP Conf. Ser. Mater. Sci. Eng., 2018, vol. 373, p. 012001.

    Article  Google Scholar 

  66. T. Tsuchiyama, J. Tobata, T. Tao, N. Nakada, and S. Takaki: Mater. Sci. Eng. A, 2012, vol. 532, pp. 585–92.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the German Research Foundation (DFG) [Grant Number MO 2580/1-2]. The authors thank Professor D. Raabe from Max-Planck-Institut für Eisenforschung GmbH for his comments on the manuscript and enabling access to APT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javad Mola.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted December 24, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Q., Yao, M., Timokhina, I. et al. Tempering Reactions and Elemental Redistribution During Tempering of Martensitic Stainless Steels. Metall Mater Trans A 50, 3663–3673 (2019). https://doi.org/10.1007/s11661-019-05272-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05272-3

Navigation