Skip to main content
Log in

Characterization of Nb Interface Segregation During Welding Thermal Cycle in Microalloyed Steel by Atom Probe Tomography

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Coarse-grained, welding heat-affected zone microstructure was simulated in a Nb-bearing microalloyed steel. The granular bainite with a great number of martensite-austenite (M-A) constituents was the predominant phase. Using atom probe tomography (APT), the distributions of niobium at prior austenite grain boundary (PAGB), ferrite/martensite-austenite (M-A) constituent interface (FMAI), and ferrite/ferrite interface (FFI) were investigated. The binding energy of Nb atom and vacancy was predicted to be 0.45 eV, indicating that Nb segregation by welding thermal cycle is probably a result of the nonequilibrium mechanism. The maximum enrichment of Nb was found at FMAI with enrichment factor of 3.50. Intermediate enrichment of Nb was at PAGB with enrichment factor of 3.12. The interfacial excess of Nb solute element ГNb at PAGB determined by APT was 0.27 × 1019 atoms/m2. The segregation energy was calculated to be 22.91 kJ/mol. The minimum enrichment of Nb was at FFI with an enrichment factor of 1.80.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. P. Kirkword: The Chinese Society for Metals (CSM) and Chinese Academy of Engineering (CAE), Hangzhou, China, 2015, pp. 439–45.

  2. E. El-Kashif, and T. Koseki: Chapter 4 Effect of Niobium on HAZ Toughness of HSLA Steels. Alloy Steel—Properties and Use, 2011, INTECH

  3. Y.Q. Zhang, H.Q. Zhang, J.F. Li, and W.M. Liu: J. Iron. Steel. Res. Int., 2009, vol. 16, pp. 73–80.

    Article  Google Scholar 

  4. N.E. Hannerz: Weld J Res Suppl., 1975, vol. 5, pp. 162–68.

    Google Scholar 

  5. K. Hulka, and F. Heisterkamp:. ASM, 1984, pp. 915–24.

  6. R.J. Hattingh and G. Pienaar: Int. J. Pres. Ves. Pip., 1998, vol. 75, pp. 661–77.

    Article  CAS  Google Scholar 

  7. S. Shanmugam, R.D.K. Misra, T. Mannering, D. Panda, and S.G. Jansto: Mater. Sci. Eng. A., 2006, vol. 437, pp. 436–45.

    Article  Google Scholar 

  8. A.B. Rothwell. Heat-Affected Zone Toughness of Welded Joints in Microalloyed Steels, Part I. IIW Document. 1979, vol. IX-1147–80.

  9. R.E. Dolby:Research Bulletin., 1977, vol. 7, pp. 298–313.

    CAS  Google Scholar 

  10. B. Hutchinson, J. Komenda, G. S. Rohrer, and H. Beladi: Acta Mater., 2015, vol. 97, pp. 380–91.

    Article  CAS  Google Scholar 

  11. Y.Q. Zhang, H.Q. Zhang, W.M. Liu, and H. Hou: Mater. Sci. Eng., A. 2009, vol. 499, pp. 182–86.

    Article  Google Scholar 

  12. P.R. Kirkwood: The Weldability of Modern Niobium Microalloyed Structural Steels, Singapore., 2012, vol. 12, pp. 5–7.

    Google Scholar 

  13. Y. Li, D.N. Crowther, M.J.W. Green, P.S. Mitchell, and T.N. Baker: ISIJ International., 2001, vol. 41, pp. 46–55.

    Article  CAS  Google Scholar 

  14. C. Fossaert, G. Rees, T. Maurickx, and H.K.D.H. Bhadeshia: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 21–30.

    Article  CAS  Google Scholar 

  15. T. Furuhara, T. Yamaguchi, G. Miyamoto, and T. Maki: Mater. Sci. Technol., 2010, vol. 26, pp. 392–97.

    Article  CAS  Google Scholar 

  16. F. Barbaro, Z.X. Zhu, L. Kuzmilova, H.J. Li, and H. Jian: TMS 2015, Hangzhou, International Conference in HSLA Steels 2015, Microalloying 2015 & Offshore Engineering Steels, 2015, pp. 453–57.

  17. H.H. Wang, Z.P. Qin, X.L. Wan, R.Wei, K.M. Wu, and R.D.K. Misra: Met. Mater. Int., 2017, 23.

  18. I. Timokhina, P.D. Hodgson, and E. Pereloma: Mater. Trans. A., 2004, vol. 35, pp. 2331–41.

    Article  Google Scholar 

  19. D. McLean: Grain Boundaries in Metals. Clarendon Press, Oxford, 1957. pp. 124.

    Google Scholar 

  20. H. Jin, I. Elfimov, and M. Militzer: J. Appl. Phys., 2014, vol. 15:093506-1–8.

    Google Scholar 

  21. N. Maruyama, and G.D.W. Smith, A. Cerezo: Mater. Sci. Eng. A., 2003, vol. 353, pp. 126–32.

    Article  Google Scholar 

  22. J.F. Peter, R.K. Chris, G.W. Jim, R.C. Kristin, P.R. Simon, and M.C. Julie: Acta Mater., 2012, vol. 60, pp. 5049–55.

    Article  Google Scholar 

  23. L. Karlsson: Acta Metall., 1988, vol. 36, pp. 25–34.

    Article  CAS  Google Scholar 

  24. M.K. Miller, and R.G. Forbes: Atom-Probe Tomography: The Local Electro Atom Probe. Springer, New York, 2014.

    Book  Google Scholar 

  25. A.H. Cottrell (1967) An Introduction to Metallurgy. London: Edward Arnold.

    Google Scholar 

  26. T.D. Xu: Scripta Mater., 1997, vol. 37, pp. 1643–50.

    Article  Google Scholar 

  27. L. Karlesson, H. Norden, and H. Odelius: Acta Metall., 1988, vol. 36, pp. 1–12.

    Article  Google Scholar 

  28. F. Danoix, E. Bémont, P. Maugis, and D. Blavette: Adv. Eng. Mater., 2006, vol. 8, pp. 1202–05.

    Article  CAS  Google Scholar 

  29. D. McLean (1957) Grain Boundaries in Metals. Clarendon Press, Oxford, pp. 116.

    Google Scholar 

  30. B.W. Krakauer, and D.N. Seidman: Phys. Rev. B., 1993, vol. 48, pp. 6724–27.

    Article  CAS  Google Scholar 

  31. M. Suehiro, Z.-K. Liu and J. Ågren: Acta mater., 1996, vol. 44, pp. 4241–51.

    Article  CAS  Google Scholar 

  32. C. Sinclair, C. Hutchinson, and Y. Bréchet: Metall. Mater. Trans. A., 2007, vol. 38, pp. 821–30.

    Article  CAS  Google Scholar 

  33. T. Gladman: The Physical Metallurgy of Microalloyed Steels Institute of Materials, Institute of Materials, Minerals & Mining (IOM3), London, 1997.

  34. C.R. Hutchinson, H.S. Zurob, and Y. Bréchet: Metall. Mater. Trans., 2006, vol. 37, pp. 1711–20.

    Article  Google Scholar 

  35. A.J. DeArdo. Niobium in modern steels, INT MATER REV., 2003, vol. 48, pp. 371–402.

    Article  CAS  Google Scholar 

  36. L. Wang, S. Parker, A. Rose, G. West, and R. Thomson, Metall. Mater. Trans. A., 2016, vol. 47, pp. 3387-96.

    Article  Google Scholar 

  37. C. Capdevila, F.G. Caballero and C. García de Andrés: ISIJ Int., 2002, vol. 42, pp. 894–902.

    Article  CAS  Google Scholar 

  38. H.K.D.H. Bhadeshia, and R.W.K. Honeycombe: Steels: Microstructure and Properties, 3rd ed., University of Cambridge, Cambridge, 2006, pp. 117.

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial supports received from National Natural Science Foundation of China (No. 51601135), Hubei Province, for 1000 talent program and the Australia research council via a discovery project. The permission for the use of the equipment—FEI Quanta 3D SEM and Cameca LEAP 4000 HR—at the Deakin University’s Advanced Characterization Facility is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to H. H. Wang or I. Timokhina.

Additional information

Manuscript submitted April 12, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H.H., Wang, J., Tong, Z. et al. Characterization of Nb Interface Segregation During Welding Thermal Cycle in Microalloyed Steel by Atom Probe Tomography. Metall Mater Trans A 49, 6224–6230 (2018). https://doi.org/10.1007/s11661-018-4940-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4940-5

Navigation