Skip to main content
Log in

The Role of Grain Orientation and Grain Boundary Characteristics in the Mechanical Twinning Formation in a High Manganese Twinning-Induced Plasticity Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In the current study, the dependence of mechanical twinning on grain orientation and grain boundary characteristics was investigated using quasi in-situ tensile testing. The grains of three main orientations (i.e., 〈111〉, 〈110〉, and 〈100〉 parallel to the tensile axis (TA)) and certain characteristics of grain boundaries (i.e., the misorientation angle and the inclination angle between the grain boundary plane normal and the TA) were examined. Among the different orientations, 〈111〉 and 〈100〉 were the most and the least favored orientations for the formation of mechanical twins, respectively. The 〈110〉 orientation was intermediate for twinning. The annealing twin boundaries appeared to be the most favorable grain boundaries for the nucleation of mechanical twinning. No dependence was found for the inclination angle of annealing twin boundaries, but the orientation of grains on either side of the annealing twin boundary exhibited a pronounced effect on the propensity for mechanical twinning. Annealing twin boundaries adjacent to high Taylor factor grains exhibited a pronounced tendency for twinning regardless of their inclination angle. In general, grain orientation has a significant influence on twinning on a specific grain boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. B.C. De Cooman, L. Chen, Han Soo Kim, Y. Estrin, S.K. Kim, and H. Voswinckel: in Microstructure and Texture in Steels, A Haldar, Suwas S, and Bhattacharjee D, eds., Springer, London, 2009, pp. 165–83.

    Chapter  Google Scholar 

  2. B. De Cooman, K. Chin, and J. Kim: New Trends and Developments in Automotive Industry, Marcello Chiaberge, ed., InTech, 2011.

  3. 3. O. Bouaziz, S. Allain, C.P. Scott, P. Cugy, and D. Barbier: Curr. Opin. Solid State Mater. Sci., 2011, vol. 15, pp. 141–68.

    Article  Google Scholar 

  4. 4. O. Grässel, L. Krüger, G. Frommeyer, and L.W. Meyer: Int. J. Plast., 2000, vol. 16, pp. 1391–1409.

    Article  Google Scholar 

  5. 5. I. Karaman, H. Sehitoglu, K. Gall, Y.I. Chumlyakov, and H.J. Maier: Acta Mater., 2000, vol. 48, pp. 1345–59.

    Article  Google Scholar 

  6. O. Bouaziz and N. Guelton: Mater. Sci. Eng. A, 2001, vols. 319–321, pp. 246–49.

  7. S. Allain, J.P. Chateau, and O. Bouaziz: Mater. Sci. Eng. A, 2004, vols. 387–389, pp. 143–47.

  8. S. Allain, J.P. Chateau, D. Dahmoun, and O. Bouaziz: Mater. Sci. Eng. A, 2004, vols. 387–389, pp. 272–76.

  9. R.E. Reed-Hill: Phys. Metall. Princ., 1964.

  10. F.D. Fischer, T. Schaden, F. Appel, and H. Clemens: Eur. J. Mech. A/Solids, 2003, vol. 22, pp. 709–26.

    Article  Google Scholar 

  11. J.P. Hirth and J. Lothe: Theory of Dislocations, 1982.

  12. 12. J.A. Venables: Phil. Mag., 1961, vol. 6, pp. 379–96.

    Article  Google Scholar 

  13. 13. X.Z. Liao, Y.H. Zhao, S.G. Srinivasan, Y.T. Zhu, R.Z. Vallev, and D.V. Gunderov: Appl. Phys. Lett., 2004, vol. 84, pp. 592–94.

    Article  Google Scholar 

  14. 14. I. Gutierrez-Urrutia, S. Zaefferer, and D. Raabe: Mater. Sci. Eng. A, 2010, vol. 527, pp. 3552–60.

    Article  Google Scholar 

  15. 15. R. Ueji, N. Tsuchida, D. Terada, N. Tsuji, Y. Tanaka, A. Takemura, and K. Kunishige: Scripta Mater., 2008, vol. 59, pp. 963–66.

    Article  Google Scholar 

  16. 16. S. Mahajan and G.Y. Chin: Acta Metall., 1973, vol. 21, pp. 1353–63.

    Article  Google Scholar 

  17. 17. J.W. Christian and S. Mahajan: Progr. Mater. Sci., 1995, vol. 39, pp. 1–157.

    Article  Google Scholar 

  18. 18. D.Z. Li, Y.H. Wei, C.Y. Liu, L.F. Hou, D.F. Liu, and X.Z. Jin: J. Iron Steel Res. Int., 2010, vol. 17, pp. 67–73.

    Article  Google Scholar 

  19. 19. H. Beladi, P. Cizek, and P.D. Hodgson: Acta Mater., 2011, vol. 59, pp. 1482–92.

    Article  Google Scholar 

  20. 20. S. Sato, E.P. Kwon, M. Imafuku, K. Wagatsuma, and S. Suzuki: Mater. Charact., 2011, vol. 62, pp. 781–88.

    Article  Google Scholar 

  21. A. Dumay, J.P. Chateau, S. Allain, S. Migot, and O. Bouaziz: Mater. Sci. Eng. A, 2008, vols. 483–484, pp. 184–87.

  22. 22. A. Saeed-Akbari, J. Imlau, U. Prahl, and W. Bleck: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 3076–90.

    Article  Google Scholar 

  23. 23. A. Soulami, K.S. Choi, Y.F. Shen, W.N. Liu, X. Sun, and M.A. Khaleel: Mater. Sci. Eng. A, 2011, vol. 528, pp. 1402–08.

    Article  Google Scholar 

  24. S. Allain, J.P. Chateau, O. Bouaziz, S. Migot, and N. Guelton: Mater. Sci. Eng. A, 2004, vols. 387–389, pp. 158–62.

  25. 25. H. Beladi, N.T. Nuhfer, and G.S. Rohrer: Acta Mater., 2014, vol. 70, pp. 281–89.

    Article  Google Scholar 

  26. 26. H. Beladi and G.S. Rohrer: Acta Mater., 2013, vol. 61, pp. 1404–12.

    Article  Google Scholar 

  27. 27. G.S. Rohrer, D.M. Saylor, B. El Dasher, B.L. Adams, A.D. Rollett, and P. Wynblatt: Z. Metallkd., 2004, vol. 95, pp. 197–214.

    Article  Google Scholar 

  28. 28. I.J. Beyerlein, L. Capolungo, P.E. Marshall, R.J. McCabe, and C.N. Tomé: Phil. Mag., 2010, vol. 90, pp. 2161–90.

    Article  Google Scholar 

  29. 29. L. Capolungo, P.E. Marshall, R.J. McCabe, I.J. Beyerlein and C.N. Tomé: Acta Mater., 2009, vol. 57, pp. 6047–56.

    Article  Google Scholar 

  30. T. Hildich, H. Beladi, P. Hodgson, and N. Stanford: Elsevier, Kidlington, ROYAUME-UNI, 2012.

  31. V. Shterner: Ph.D. Thesis, Deakin University, Australia, 2015.

  32. 32. W.F. Hosford: The Mechanics of Crystals and Textured Polycrystals, Oxford Engineering Science Series 1993, Oxford University Press, New York, NY, 1993.

    Google Scholar 

  33. 33. D.R. Steinmetz, T. Jäpel, B. Wietbrock, P. Eisenlohr, I. Gutierrez-Urrutia, A. Saeed–Akbari, T. Hickel, F. Roters, and D. Raabe: Acta Mater., 2013, vol. 61, pp. 494–510.

    Article  Google Scholar 

  34. 34. J.A. Venables: Phil. Mag., 1974, vol. 30, pp. 1165–69.

    Article  Google Scholar 

  35. 35. J.B. Cohen and J. Weertman: Acta Metall., 1963, vol. 11, pp. 996–98.

    Article  Google Scholar 

  36. 36. H. Fujita and T. Mori: Scripta Metall., 1975, vol. 9, pp. 631–36.

    Article  Google Scholar 

  37. 37. P. Yang, Q. Xie, L. Meng, H. Ding, and Z. Tang: Scripta Mater., 2006, vol. 55, pp. 629–31.

    Article  Google Scholar 

  38. 38. L. Meng, P. Yang, Q. Xie, H. Ding, and Z. Tang: Scripta Mater., 2007, vol. 56, pp. 931–34.

    Article  Google Scholar 

  39. 39. H. Beladi, I.B. Timokhina, Y. Estrin, J. Kim, B.C. De Cooman, and S.K. Kim: Acta Mater., 2011, vol. 59, pp. 7787–99.

    Article  Google Scholar 

  40. S. Miura, J. Takamura, and N. Narita: Trans. JIM, 1968, vol. 9.

  41. 41. A.A. Saleh, A.A. Gazder, and E.V. Pereloma: Trans. Ind. Inst. Met., 2013, vol. 66, pp. 621–29.

    Article  Google Scholar 

  42. 42. A.A. Saleh, E.V. Pereloma, B. Clausen, D.W. Brown, C.N. Tomé, and A.A. Gazder: Mater. Sci. Eng. A, 2014, vol. 589, pp. 66–75.

    Article  Google Scholar 

  43. S. Mahajan: in Encyclopedia of Materials: Science and Technology, K.H. Jürgen Buschow, R.W. Cahn, Merton C. Flemings, B. Ilschner, E.J. Kramer, S. Mahajan, and P. Veyssière, eds., Elsevier, Oxford, 2002, pp. 1–14.

  44. 44. M. Sachtleber, Z. Zhao, and D. Raabe: Mater. Sci. Eng. A, 2002, vol. 336, pp. 81–87.

    Article  Google Scholar 

Download references

Acknowledgments

Professor B.C. De Cooman is gratefully acknowledged for providing the TWIP steel used for this study. The authors also acknowledge the technical and scientific support of the Deakin Advanced Characterization Facility. This study was supported by an Australian Research Grant (Grant No. FL0992361). ADR acknowledges the support of the U.S. AFOSR under Grant No. FA9550-16-1-0105.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Beladi.

Additional information

Manuscript submitted August 15, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shterner, V., Timokhina, I.B., Rollett, A.D. et al. The Role of Grain Orientation and Grain Boundary Characteristics in the Mechanical Twinning Formation in a High Manganese Twinning-Induced Plasticity Steel. Metall Mater Trans A 49, 2597–2611 (2018). https://doi.org/10.1007/s11661-018-4606-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4606-3

Navigation