Skip to main content
Log in

Dynamic Restoration Processes in a 23Cr-6Ni-3Mo Duplex Stainless Steel: Effect of Austenite Morphology and Interface Characteristics

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The austenite and ferrite microstructure evolution and restoration mechanisms were studied during hot uniaxial compression of a 23Cr-6Ni-3Mo duplex stainless steel with two markedly different austenite morphologies (i.e., equiaxed and Widmanstätten). The deformation was performed at a temperature of 1273 K (1000 °C) at a strain rate of 0.1 s−1. The strain was preferentially partitioned in ferrite for both the microstructures studied. Both austenite morphologies displayed frequent splitting into complex-shaped deformation bands, containing dislocation cells and local stacking faults. Equiaxed austenite was favorable to the local development of microbands (MBs), while its Widmanstätten counterpart appeared to be completely resistant to their formation. This was attributed to the complexity of deformation inside the irregularly shaped Widmanstätten plates precluding the formation of self-screening MB arrays. The MB boundaries were typically aligned along highly stressed slip planes. The presence of discontinuous dynamic recrystallization (DDRX) within both the austenite morphologies was very limited. A slightly higher fraction of DDRX was detected in Widmanstätten austenite, compared to equiaxed austenite, which was ascribed to its higher contribution to the overall deformation and lower fraction of low-mobility coherent twin boundaries. Furthermore, it was demonstrated that continuous dynamic recrystallization (CDRX) was the main restoration mechanism within ferrite for both the microstructure types studied. The CDRX development within ferrite was accelerated in the microstructure with equiaxed austenite. This was related to the comparatively lower fraction of coherent interphases in this microstructure, which would hinder the slip transmission across the interphase and make the strain concentrate within ferrite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. R.N. Gunn: Duplex Stainless Steels: Microstructure, Properties and Applications, Woodhead Publishing, Cambridge, 1997.

    Book  Google Scholar 

  2. A. Iza-Mendia, A. Pinol-Juez, J.J. Urcola and I. Gutierrez: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 2975-86.

    Article  Google Scholar 

  3. L. Duprez, B.C. De Cooman and N. Akdut: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 1931-38.

    Article  Google Scholar 

  4. J.M. Cabrera, A. Mateo, L. Llanes, J.M. Prado and M. Anglada: J. Mater. Proc. Technol., 2003, vol. 143, pp. 321-25.

    Article  Google Scholar 

  5. A. Dehghan-Manshadi: Evolution of Recrystallization during and Following Hot Deformation. PhD thesis, Deakin University, 2007.

  6. N. Haghdadi, D. Martin and P.D. Hodgson: Mater. Des., 2016, vol. 106, pp. 420-27.

    Article  Google Scholar 

  7. P. Cizek: Acta Mater., 2016, vol. 106, pp. 129-43.

    Article  Google Scholar 

  8. N. Haghdadi, P. Cizek, H. Beladi and P.D. Hodgson: Acta Mater., 2017, vol. 126, pp. 44-57.

    Article  Google Scholar 

  9. N. Haghdadi, P. Cizek, H. Beladi and P.D. Hodgson: Philos. Mag., 2017, vol. 97, pp. 1209-37.

    Article  Google Scholar 

  10. F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, 2nd ed., Elsevier Science, New York, 2004.

    Google Scholar 

  11. T. Sakai and J.J. Jonas: Acta Metall., 1984, vol. 32, pp. 189-209.

    Article  Google Scholar 

  12. E. Brünger, X. Wang and G. Gottstein: Scripta Mater., 1998, vol. 38, pp. 1843-49.

    Article  Google Scholar 

  13. H. Beladi, P. Cizek and P.D. Hodgson: Metall. Mater. Trans. A, 2009, vol. 40, pp. 1175-89.

    Article  Google Scholar 

  14. H. Beladi, P. Cizek and P.D. Hodgson: Scr. Mater., 2009, vol. 61, pp. 528-31.

    Article  Google Scholar 

  15. H. Beladi, P. Cizek and P.D. Hodgson: Scr. Mater., 2010, vol. 62, pp. 191-94.

    Article  Google Scholar 

  16. H. Beladi, P. Cizek and P.D. Hodgson: Acta Mater., 2010, vol. 58, pp. 3531-41.

    Article  Google Scholar 

  17. H. Beladi, P. Cizek and P.D. Hodgson: Acta Mater., 2011, vol. 59, pp. 1482-92.

    Article  Google Scholar 

  18. A. Piñol-Juez, A. Iza-Mendia and I. Gutiérrez: Metall. Mater. Trans. A, 2000, vol. 31, pp. 1671-77.

    Article  Google Scholar 

  19. C.G. Schmidt, C.M. Young, B. Walser, R.H. Klundt and O.D. Sherby: Metall. Trans. A, 1982, vol. 13, pp. 447-56.

    Article  Google Scholar 

  20. Baczynski and J.J. Jonas: Metall. Mater. Trans., 1998, vol. 29, pp. 447-62.

    Article  Google Scholar 

  21. F. Gao, Y. Xu, B. Song and K. Xia: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 21-27.

    Article  Google Scholar 

  22. C. Huang, E.B. Hawbolt, X. Chen, T.R. Meadowcroft and D.K. Matlock: Acta Mater., 2001, vol. 49, pp. 1445-52.

    Article  Google Scholar 

  23. L. Li, W. Yang and Z. Sun: Metall. Mater. Trans. A, 2006, vol. 37, pp. 609-19.

    Google Scholar 

  24. A. Oudin, P.D. Hodgson and M.R. Barnett: Mater. Sci. Eng. A, 2008, vol. 486, pp. 72-79.

    Article  Google Scholar 

  25. C. Castan, F. Montheillet and A. Perlade: Scripta Mater., 2013, vol. 68, pp. 360-64.

    Article  Google Scholar 

  26. K.S. Han, T.J. Song and B.C. De Cooman: ISIJ Intern., 2013, vol. 53, pp. 294-303.

    Article  Google Scholar 

  27. L. Li, W. Yang and Z. Sun: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 2060-69.

    Article  Google Scholar 

  28. A. Dehghan-Manshadi, M.R. Barnett and P.D. Hodgson: Mater. Sci. Technol., 2007, vol. 23, pp. 1478-84.

    Article  Google Scholar 

  29. R.Z. Wang and T.C. Lei: Scripta Metall. Mater., 1994, vol. 31, pp. 1193-96.

    Article  Google Scholar 

  30. P. Cizek, and B.P. Wynne: Mater. Sci. Eng. A, 1997, vol. 230, pp. 88–94.

    Article  Google Scholar 

  31. O. Balancin, W.A.M. Hoffmann and J.J. Jonas: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 1353-64.

    Article  Google Scholar 

  32. T. Maki, T. Furuhara and T. Tsuzaki: ISIJ Intern., 2001, vol. 41, pp. 571-79.

    Article  Google Scholar 

  33. P. Cizek, B.P. Wynne and W.M. Rainforth: J. Microsc., 2006, vol. 222, pp. 85-96.

    Article  Google Scholar 

  34. S. Gourdet and F. Montheillet: Mater. Sci. Eng. A, 2000, vol. 283, pp. 274-88.

    Article  Google Scholar 

  35. S. Gourdet and F. Montheillet: Acta Mater., 2003, vol. 51, pp. 2685-99.

    Article  Google Scholar 

  36. G. Glover and C.M. Sellars: Metall. Trans., 1973, vol. 4, pp. 765-75.

    Article  Google Scholar 

  37. N. Tsuji, Y. Matsubara and Y. Saito: Scripta Mater., 1997, vol. 37, pp. 477-84.

    Article  Google Scholar 

  38. S.V.S.N. Murty, S. Torizuka, K. Nagai, T. Kitai and Y. Kogo: Scripta Mater., 2005, vol. 53, pp. 763-68.

    Article  Google Scholar 

  39. J-H. Kang and S. Torizuka: Scripta Mater., 2007, vol. 57, pp. 1048-51.

    Article  Google Scholar 

  40. R. Wang and T.C. Lei: Mater. Sci. Eng. A, 1993, vol. 165, pp. 19-27.

    Article  Google Scholar 

  41. B. Verhaeghe, F. Louchet, B. Doisneau-Cottignies, Y. Bréchet and J.P. Massoud: Phil. Mag. A, 1997, vol. 76, pp. 1079-91.

    Article  Google Scholar 

  42. G. Martin: Hot Workability of Duplex Stainless Steels, PhD thesis, University of Grenoble, 2011.

  43. H. Sieurin and R. Sandström: Mater. Sci. Eng. A, 2006, vol. 418, pp. 250-56.

    Article  Google Scholar 

  44. N. Haghdadi, D. Abou-Ras, P. Cizek, P.D. Hodgson, A.D. Rollett, and H. Beladi: Mater. Letters, 2017, vol. 196, pp. 264–68.

    Article  Google Scholar 

  45. E. Werner, T. Siegmund and F.D. Fischer: Comput. Mater. Sci., 1994, vol. 3, pp. 279–85.

    Article  Google Scholar 

  46. F.J. Humphreys, P.S. Bate and P.J. Hurley: J. Microsc., 2001, vol. 201, pp. 50–58.

    Article  Google Scholar 

  47. D.G. Brandon: Acta Metall., 1966, vol. 14, pp. 1479–84.

    Article  Google Scholar 

  48. O. Engler and V. Randle: Introduction to Texture Analysis—Macrotexture, Microtexture and Orientation Mapping, second ed., CRC Press, New York, 2010.

    Google Scholar 

  49. P. Heilmann, W.A.T. Clark, and D.A. Rigney: Ultramicroscopy, 1982, vol. 9, pp. 365–71.

    Article  Google Scholar 

  50. D. Jorge-Badiola, A. Iza-Mendia and I. Gutierrez: Mater. Sci. Eng. A, 2005, vol. 394, pp. 445-54.

    Article  Google Scholar 

  51. I.L. Dillamore, P.L. Morris, C.J.E. Smith and W.B. Hutchinson: Proc. R. Soc. Lond. A, 1972, vol. 329, pp. 405-20.

    Article  Google Scholar 

  52. C.S. Lee and B.J. Duggan: Acta Metall. Mater., 1993, vol. 9, pp. 2691-99.

    Article  Google Scholar 

  53. D. Raabe, Z. Zhao, S.-J. Park and F. Roters: Acta Mater., 2002, vol. 50, pp. 421-40.

    Article  Google Scholar 

  54. A.S. Taylor, P. Cizek and P.D. Hodgson: Acta Mater., 2012, vol. 60, pp. 1548-69.

    Article  Google Scholar 

  55. D. Poddar, P. Cizek, H. Beladi and P.D. Hodgson: Acta Mater., 2015, vol. 99, pp. 347-62.

    Article  Google Scholar 

  56. D. Poddar, P. Cizek, H. Beladi and P.D. Hodgson: Metall. Mater. Trans. A, 2015, vol. 46, pp. 5933-51.

    Article  Google Scholar 

  57. D. Poddar, P. Cizek, H. Beladi, P.D. Hodgson: Mater. Charact., 2016, vol. 118, pp. 382-96.

    Article  Google Scholar 

  58. B. Bay, N. Hansen, D.A. Hughes and D. Kuhlmann-Wilsdorf: Acta Metall. Mater., 1992, vol. 40, pp. 205-19.

    Article  Google Scholar 

  59. I. Gutierrez-Urrutia, D. Raabe: Scripta Mater., 2013, vol. 69, pp. 53-56.

    Article  Google Scholar 

  60. N. Afrin, M.Z. Quadir, W. Xu and M. Ferry: Acta Mater., 2012, vol. 60, pp. 6288-300.

    Article  Google Scholar 

  61. H.K.D.H. Bhadeshia: Bainite in Steels, Inst. of Metals, 1992.

  62. R. Dakhlaoui, C. Braham, and A. Baczmański: J. Neutron Res., 2007, vol. 15, pp. 131–37.

    Article  Google Scholar 

  63. T.C. Lee, I.M. Robertson and K. Birnbaum: Metall. Trans. A, 1990, vol. 21A, pp. 2437–47.

    Article  Google Scholar 

  64. I. Gutierrez-Urrutia, and D. Raabe: Acta Mater., 2012, vol. 60, pp. 5791–802.

    Article  Google Scholar 

  65. G.M. Le, A. Godfrey, C.S. Hong, X. Huang and G. Winther: Scripta Mater., 2012, vol. 66, pp. 359–62.

    Article  Google Scholar 

  66. C. Hong, X. Huang, and G. Winther: Philos. Mag., 2013, vol. 93, pp. 3118–41.

    Article  Google Scholar 

  67. F.J. Humphreys, and P.S. Bate: Acta Mater., 2007, vol. 55, pp. 5630–45.

    Article  Google Scholar 

  68. A. Albou, J.H. Driver, and C. Maurice: Acta Mater., 2010, vol. 58, pp. 3022–34.

    Article  Google Scholar 

  69. B. Sun, H. Aydin, F. Fazeli, and S. Yue: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 1782–91.

    Article  Google Scholar 

Download references

Acknowledgments

The present work was carried out with the support of the Deakin Advanced Characterisation Facility. Financial support provided by the Australian Research Council is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Cizek.

Additional information

Manuscript submitted December 9, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haghdadi, N., Cizek, P., Beladi, H. et al. Dynamic Restoration Processes in a 23Cr-6Ni-3Mo Duplex Stainless Steel: Effect of Austenite Morphology and Interface Characteristics. Metall Mater Trans A 48, 4803–4820 (2017). https://doi.org/10.1007/s11661-017-4227-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-4227-2

Navigation