Skip to main content
Log in

Static Softening in a Ni-30Fe Austenitic Model Alloy After Hot Deformation: Microstructure and Texture Evolution

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In the current study, the microstructure and texture characteristics of a model Ni-30Fe austenitic alloy were investigated during hot deformation and subsequent isothermal holding. The deformation led to the formation of self-screening arrays of microbands within a majority of grains. The microbands characteristics underwent rather modest changes during the post-deformation annealing, which suggests that limited dislocation annihilation occurs within the corresponding dislocation walls. The fraction of statically recrystallized (SRX) grains progressively increased with the holding time and closely matched the softening fraction measured from the offset flow stress approach. The corresponding texture was weak and preserved its character with the holding time. There was no pronounced temperature effect on the grain boundary character distribution after the completion of SRX. The Σ3 and Σ9 coincidence site lattice boundaries were characterized as (111) pure twist and (1−14) symmetric tilt types, respectively. Nonetheless, the recrystallization temperature slightly affected the grain boundary network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. [1] F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, 2nd ed., Elsevier Science, New York, 2004.

    Google Scholar 

  2. [2] C.M. Sellars and J.A. Whiteman: Met. Sci., 1979, vol. 13, pp. 187-194.

    Article  Google Scholar 

  3. [3] S-H. Cho, K-B. Kang, and J.J. Jonas: ISIJ Intern., 2001, vol. 41, pp. 766-773.

    Article  Google Scholar 

  4. [4] H. Beladi and P.D. Hodgson: Scripta Mater., 2007, vol. 56, pp. 1059-1062.

    Article  Google Scholar 

  5. [5] P.J. Hurley, B.C. Muddle, and P.D. Hodgson: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 1507-1517.

    Article  Google Scholar 

  6. [6] W.M. Rainforth, M.P. Black, R.L. Higginson, E.J. Palmiere, C.M. Sellars, I. Prabst, P. Warbichler, and F. Hofer: Acta Mater., 2002, vol. 50, pp. 735–747.

    Article  Google Scholar 

  7. [7] Y. Adachi, M. Wakita, H. Beladi, and P.D. Hodgson: Acta Mater., 2007, vol. 55, pp. 4925-4934.

    Article  Google Scholar 

  8. [8] A.S. Taylor, P. Cizek, and P.D. Hodgson: Acta Mater., 2011, vol. 59, pp. 5832-5844.

    Article  Google Scholar 

  9. [9] H. Beladi, P. Cizek, and P.D. Hodgson, Metall. Mater. Trans. A, 2009, vol. 40A, pp. 1175-1189.

    Article  Google Scholar 

  10. [10] H. Beladi, P. Cizek, and P.D. Hodgson: Acta Mater., 2010, vol. 58, pp. 3531-3541.

    Article  Google Scholar 

  11. [11] H. Beladi, P. Cizek, and P.D. Hodgson: Acta Mater., 2011, vol. 59, pp. 1482-1492.

    Article  Google Scholar 

  12. [12] A.S. Taylor, P. Cizek, and P.D. Hodgson: Acta Mater., 2012, vol. 60, pp. 1548-1569.

    Article  Google Scholar 

  13. [13] D. Poddar, P. Cizek, H. Beladi, and P.D. Hodgson: Metall. Mater. Trans. A, 2015, vol. 46A, pp. 5933-5951.

    Article  Google Scholar 

  14. [14] D. Poddar, P. Cizek, H. Beladi, and P.D. Hodgson: Acta Mater., 2015, vol. 99, pp. 347-362.

    Article  Google Scholar 

  15. [15] Q. Liu, D. Juul Jensen, and N. Hansen: Acta Mater. 1998, vol. 46, pp. 5819-5838.

    Article  Google Scholar 

  16. [16] Q.Z. Chen, A.H.W. Ngan, and B.J. Duggan, Proc. R. Soc. Lond. A, 2003, vol. 459, pp. 1661-1685.

    Article  Google Scholar 

  17. [17] P. Cizek, F. Bai, E.J. Palmiere, and W.M. Rainforth: J. Microsc., 2005, vol. 217, pp. 138–151.

    Article  Google Scholar 

  18. [18] V. Randle: Acta Mater., 1999, vol. 47, pp. 4187-4196.

    Article  Google Scholar 

  19. [19] A. Saeed-Akbari, J. Imlau, U. Prahl, and W. Bleck: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 3076–90.

    Article  Google Scholar 

  20. [20] G.S. Rohrer, D.M. Saylor, B. El Dasher, B.L. Adams, A.D. Rollett, and P. Wynblatt: Z. Metallkd., 2004, vol. 95, pp. 1–18.

    Article  Google Scholar 

  21. [21] W. Charnock and J. Nutting: Met. Sci. J., 1967, vol. 1, pp. 123-127.

    Article  Google Scholar 

  22. P.D. Hodgson, D.C. Collinson, and B. Perrett: Proc. of the Int. Symp. on Physical Simulation, NRIM, Tsukuba, 1997, pp. 219–23.

  23. [23] D.S. Fields, W.A. Backofen: Proc. Am. Soc. Test. Mater., 1957, vol. 75, pp. 1259-1272.

    Google Scholar 

  24. [24] H.J. Bunge: Texture Analysis in Materials Science: Mathematical Methods, Butterworths, London, 1982.

    Google Scholar 

  25. [25] L.S. Toth, P. Gilormini, and J.J. Jonas: Acta Metall., 1988, vol. 36, pp. 3077-3091.

    Article  Google Scholar 

  26. [26] A.M. Wusatowska-Sarnek, H. Miura, and T. Sakai: Mater. Sci. Eng. A, 2002, vol. 323, pp. 177-186.

    Article  Google Scholar 

  27. [27] H. Beladi, N.T. Nuhfer, and G.S. Rohrer: Acta Mater., 2014, vol. 70, pp. 281-289.

    Article  Google Scholar 

  28. [28] J. Li, S.J. Dillon, and G.S. Rohrer: Acta Mater., 2009, vol. 57, pp. 4304-4311.

    Article  Google Scholar 

  29. [29] S. Poulat, B. Décamps, and L. Priester: Philos. Mag. A, 1998, vol. 77, pp. 1381–1397.

    Article  Google Scholar 

  30. [30] J.J. Jonas and L.S. Toth: Scripta Metall. Mater., 1992, vol. 27, pp. 1575-1580.

    Article  Google Scholar 

  31. [31] D.G. Brandon: Acta Metall., 1966, vol. 14, pp. 1479-1484.

    Article  Google Scholar 

  32. [32] H. Beladi, G.S. Rohrer, A.D. Rollett, V. Tari, and P.D. Hodgson: Acta Mater., 2014, vol. 63, pp. 86-98.

    Article  Google Scholar 

  33. [33] V. Randle, G.S. Rohrer, and Y. Hu: Scripta Mater., 2008, vol. 58, pp. 183-186.

    Article  Google Scholar 

  34. [34] W. Form, G. Gindraux, and V. Mlyncar: Met. Sci., 1980, vol. 14, pp. 16-20.

    Article  Google Scholar 

  35. [35] T. Watanabe, H. Fujii, H. Oikawa, and K.I. Arai: Acta Metall., 1989, vol. 37, pp. 941-952.

    Article  Google Scholar 

  36. [36] G.S. Rohrer, V. Randle, C-S. Kim, and Y. Hu: Acta Mater., 2006, vol. 54, pp. 4489-4502.

    Article  Google Scholar 

  37. [37] S.L. Shang, C.L. Zacherl, H.Z. Fang, Y. Wang, Y. Du, and Z.K. Liu: J. Phys. Cond. Matter, 2012, vol. 24, pp. 1-14.

    Google Scholar 

Download references

Acknowledgment

This research was supported by grants through the Australian Research Council including an ARC Federation Fellowship (PH). This work was carried out with the support of the Deakin Advanced Characterization Facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Beladi.

Additional information

Manuscript submitted May 30, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beladi, H., Cizek, P., Taylor, A.S. et al. Static Softening in a Ni-30Fe Austenitic Model Alloy After Hot Deformation: Microstructure and Texture Evolution. Metall Mater Trans A 48, 855–867 (2017). https://doi.org/10.1007/s11661-016-3880-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3880-1

Keywords

Navigation