Skip to main content
Log in

The Impact of Retained Austenite Characteristics on the Two-Body Abrasive Wear Behavior of Ultrahigh Strength Bainitic Steels

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In the current study, a high-carbon, high-alloy steel (0.79 pct C, 1.5 pct Si, 1.98 pct Mn, 0.98 pct Cr, 0.24 pct Mo, 1.06 pct Al, and 1.58 pct Co in wt pct) was subjected to an isothermal bainitic transformation at a temperature range of 473 K to 623 K (200 °C to 350 °C), resulting in different fully bainitic microstructures consisting of bainitic ferrite and retained austenite. With a decrease in the transformation temperature, the microstructure was significantly refined from ~300 nm at 623 K (350 °C) to less than 60 nm at 473 K (200 °C), forming nanostructured bainitic microstructure. In addition, the morphology of retained austenite was progressively altered from film + blocky to an exclusive film morphology with a decrease in the temperature. This resulted in an enhanced wear resistance in nanobainitic microstructures formed at low transformation temperature, e.g., 473 K (200 °C). Meanwhile, it gradually deteriorated with an increase in the phase transformation temperature. This was mostly attributed to the retained austenite characteristics (i.e., thin film vs blocky), which significantly altered their mechanical stability. The presence of blocky retained austenite at high transformation temperature, e.g., 623 K (350 °C) resulted in an early onset of TRIPing phenomenon during abrasion. This led to the formation of coarse martensite with irregular morphology, which is more vulnerable to crack initiation and propagation than that of martensite formed from the thin film austenite, e.g., 473 K (200 °C). This resulted in a pronounced material loss for the fully bainitic microstructures transformed at high temperature, e.g., 623 K (350 °C), leading to distinct sub-surface layer and friction coefficient curve characteristics. A comparison of the abrasive behavior of the fully bainitic microstructure formed at 623 K (350 °C) and fully pearlitic microstructure demonstrated a detrimental effect of blocky retained austenite with low mechanical stability on the two-body abrasion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. B. Bhushan: Introduction to Tribology, 2nd ed. Wiley, New York, 2013, pp. 328–340.

    Book  Google Scholar 

  2. WA Glaeser, CR Brundle, CA Evans: Characterization of Tribological Materials, 2nd edn. Momentum Press, New York, 2010, pp. 80-83.

    Google Scholar 

  3. JA Hawk and RD Wilson: Tribology of Earthmoving, Mining, and Minerals Processing. CRC Press LLC, Florida, 2001, pp. 1331-1370.

    Google Scholar 

  4. IM Hutchings: Tribology-Friction and Wear of Engineering Materials. Butterworth-Heinemann Ltd, Great Britain, 1992, pp. 133-135

    Google Scholar 

  5. C. Imhoff, D. Brown, G. Hane, R. Hutchinson, R. Erickson, T. Merriman, T. Gruber and S. Barber: Report No. PNL-5535 ON: DE86000841, Pacific Northwest Labs., Richland, WA, September 1985.

  6. N. Dube and I. Hutchings, Wear, 1999, vol. 233, pp. 246-256.

    Article  Google Scholar 

  7. S. Mezlini, M. Zidi, H. Arfa, M. B. Tkaya and P. Kapsa, Comptes Rendus Mecanique, 2005, vol. 333, no.11, pp. 830-837.

    Article  Google Scholar 

  8. D. A. Rigney and J. E. Hammerberg, MRS Bulletin, 1998, vol. 23, no. 6, pp. 32-36.

    Article  Google Scholar 

  9. Y. Wang and T. Lei, Wear, 1996, vol. 194, pp. 44-53.

    Article  Google Scholar 

  10. W. You, P. Li, T. Lei and T. Lei, Wear, 1991, vol.143, pp. 57-69.

    Article  Google Scholar 

  11. W. Li, Y. Wang and M. Yan, Journal of materials science, 2005, vol. 40, pp. 5635-5640.

    Article  Google Scholar 

  12. P. Hurricks, Wear, 1973, vol. 26, pp. 285-304.

    Article  Google Scholar 

  13. D. Rigney, L. Chen, M. G. Naylor and A. Rosenfield, Wear, 1984, vol. 100, pp. 195-219.

    Article  Google Scholar 

  14. K.-H. ZumGahr, D. V. Doane: Metall. Trans. A, 1980, 11(4):613-620.

    Article  Google Scholar 

  15. K.-H. ZumGahr, Tribol Int., 1998, vol. 31, no. 10, pp. 587-596.

    Article  Google Scholar 

  16. V.G. Efremenko, K. Shimizu, T. Noguchi, A.V. Efremenko and Yu.G. Chabak, Wear, 2013, vol. 305, pp.155-165.

    Article  Google Scholar 

  17. V.G. Efremenko, M.N. Brykov, M.I.Andrushchenko, R.A. Kulikovskii and A.V. Efremenko, Journal of friction and wear, 2012, vol. 33, pp.39-46.

    Article  Google Scholar 

  18. B. Narayanaswamy, P. Hodgson and H. Beladi, Wear, 2016, vol. 350-351, pp. 155-165.

    Article  Google Scholar 

  19. A. Bahrami, S. M. Anijdan, M. Golozar, M. Shamanian and N. Varahram, Wear, 2005, vol. 258, pp. 846-851.

    Article  Google Scholar 

  20. K. Holmberg and A. Mathews, Thin Solid Films, 1994, vol. 253, no. 1, pp.173-178.

    Article  Google Scholar 

  21. H.K.D.H. Bhadeshia, Bainite in Steels, 2nd ed. Institute of Metals, London 1992, pp. 296-298.

    Google Scholar 

  22. P. Zhang, F.C. Zhang, Z.G. Yan, T.S. Wang and L.H. Qian, Wear, 2011, vol. 271, pp. 697-704.

    Article  Google Scholar 

  23. L.S. Malinov, V.L. Malinov, D.V. Burova and V.V. Anichenkov J. Frict. Wear, 2015, vol. 36, pp. 237-240.

    Article  Google Scholar 

  24. C. Garcia-Mateo, F. Caballero, J. Chao, C. Capdevila and C. G. De Andres, Journal of materials science, 2009, vol. 44, no. 17, pp. 4617-4624.

    Article  Google Scholar 

  25. L. C. Chang, Wear, 2005, vol. 258, pp. 730-743.

    Article  Google Scholar 

  26. A. Leiro, A. Kankanala, E. Vuorinen and B. Prakash, Wear, 2011, vol. 273, pp. 2-8.

    Article  Google Scholar 

  27. F. Caballero, H. Bhadeshia, K. Mawella, D. Jones and P. Brown, Materials Science and Technology, 2001, vol. 17, pp. 512-516.

    Article  Google Scholar 

  28. F. Caballero, H. Bhadeshia, K. Mawella, D. Jones and P. Brown, Materials Science and Technology, 2001, vol. 17, pp. 517-522.

    Article  Google Scholar 

  29. T. Sourmail, F.G. Caballero, C. Garcia-Mateo, V. Smanio,C. Ziegler, M. Kuntz, R. Elvira, A. Leiro, E. Vuorinen and T. Teeri, Materials Science and Technology, 2013, vol. 29, pp. 1166-1173.

    Article  Google Scholar 

  30. S. D. Bakshi, A. Leiro, B.Prakash and H. K. D. H. Bhadeshia, Wear, 2014, vol. 316, pp. 70-78.

    Article  Google Scholar 

  31. S. D. Bakshi, P. Shipway and H. Bhadeshia, Wear, 2013, vol. 308, pp. 46-53.

    Article  Google Scholar 

  32. K. J. Hume, A history of engineering metrology, pp. 152, Mechanical Engineering Publications, London, 1980.

    Google Scholar 

  33. D.J. Dyson, B. Holmes, The Journal of iron and steel institute, 1970, vol. 208, pp. 469-474.

    Google Scholar 

  34. P.B. Hirsch, A. Howie, R. Nicholson, D. Pashley, and M.J. Whelan: Electron Microscopy of Thin Crystals. P. Butterworth INC., Washington, DC, 1966, pp. 450, 1965.

  35. I.B. Timokhina, H Beladi, X.Y. Xiong, Y. Adachi and P.D. Hodgson, Acta Materialia, 2011, vol.59, no.14, pp. 5511-5522.

    Article  Google Scholar 

  36. H. Bhadeshia, Acta Metallurgica, 1981, vol. 29, pp. 1117-1130.

    Article  Google Scholar 

  37. H. Bhadeshia and D. Edmonds, Metal Science, 1983, vol. 17, pp. 411-419.

    Article  Google Scholar 

  38. H. K. D. H. Bhadeshia and A. R. Waugh, Acta Metallurgica, 1982, vol. 30, pp. 775-784.

    Article  Google Scholar 

  39. E. Vuorinen, P. David, J. Lundmark and B. Prakash, Journal of Iron and Steel Research, International, 2007, vol. 14, pp. 245-248.

    Article  Google Scholar 

  40. O. P. Modi, B. K. Prasad, A. K. Jha, R. Dasgupta and A. H. Yegneswaran, Tribology Letters, 2003, vol. 15, no. 3, pp. 249-255.

    Article  Google Scholar 

  41. B. Narayanaswamy, P. Hodgson and H. Beladi, Wear, 2016, vol. 354-355, pp. 41-52.

    Article  Google Scholar 

  42. B. Bhushan: Modern Tribology Handbook. CRC Press LLC, Florida, 2001, pp. 49-119.

    Google Scholar 

  43. F. P. Bowden and D. Tabor, Friction: an introduction to tribology, pp.89, RE Krieger Publishing Company, New York, 1973.

    Google Scholar 

  44. T. S. Eyre and A. Baxter, Tribology, 1972, vol. 5, pp. 256-261.

    Article  Google Scholar 

  45. J. Larsen-Basse, Scripta Metallurgica et. Materialia, 1990, vol. 24, pp. 821-826.

    Article  Google Scholar 

  46. M. Moore, Wear, 1971, vol. 17, pp. 51-58.

    Article  Google Scholar 

  47. K. Hokkirigawa and K. Kato, Tribol int, 1988, vol. 21, pp. 51-57.

    Article  Google Scholar 

  48. J. Larsen-Badse and K. Mathew, Wear, 1969, vol. 14, pp. 199-205.

    Article  Google Scholar 

  49. F. G. Caballero, C. GarcíA-Mateo, J. Chao, M. J. Santofimia, C. Capdevila and C. G. De Andres, ISIJ international, 2008, vol. 48, pp. 1256-1262.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Australian Research Council (FL0992361) for their financial support. The microstructural characterization was carried out with the help of the Deakin Advanced Characterization Facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balaji Narayanaswamy.

Additional information

Manuscript submitted March 24, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Narayanaswamy, B., Hodgson, P., Timokhina, I. et al. The Impact of Retained Austenite Characteristics on the Two-Body Abrasive Wear Behavior of Ultrahigh Strength Bainitic Steels. Metall Mater Trans A 47, 4883–4895 (2016). https://doi.org/10.1007/s11661-016-3690-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3690-5

Keywords

Navigation