Skip to main content
Log in

Hydrogen Permeation in Nanostructured Bainitic Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Hydrogen permeation of nanostructured bainitic steel, produced at two different transformation temperatures, i.e., 473.15 K (200 °C) BS-200 and 623.15 K (350 °C) BS-350, was determined using Devanathan–Stachurski hydrogen permeation cell and compared with that of mild steel. Nanostructured bainitic steel showed lower effective diffusivity of hydrogen as compared to the mild steel. The BS-200 steel, which exhibited higher volume fraction of bainitic ferrite phase, showed lower effective diffusivity than BS-350 steel. The finer microstructural constituents (bainitic ferrite laths and retained austenite films) and higher dislocation density in the bainitic ferrite phase of BS-200 steel can be attributed to its lower effective diffusivity as compared to BS-350 steel and mild steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. 1. I. Park, S. Lee, H. Jeon, and Y. Lee: Corros. Sci., 2015, vol. 93, pp. 63-69.

    Article  Google Scholar 

  2. 2. I.B. Timokhina, H. Beladi, X.Y. Xiong, Y. Adachi, and P.D. Hodgson: Acta Mater., 2011, vol. 59, pp 5511-22.

    Article  Google Scholar 

  3. 3. F.G. Caballero and H.K.D.H. Bhadeshia: Solid State Mater. Sci., 2004, vol. 8, pp. 251-57.

    Google Scholar 

  4. F.G. Caballero, M.K. Miller, S.S. Babu, and C. Garcia Mateo: Acta Mater., 2007, vol. 55, pp. 381–90

  5. 5. M.N. Yoozbashi and S. Yazdari: Mater. Sci. Eng. A-Struct., 2010, vol. 527, pp. 3200-05.

    Article  Google Scholar 

  6. O. Kazum, M. Bobby Kannan, H. Beladi, I.B. Timokhina, P.D. Hodgson, and S. Khoddam: Mater. Des., 2014, vol. 54, pp. 67–81.

  7. 7. O. Kazum, M. Bobby Kannan, H. Beladi, I.B. Timokhina, P.D. Hodgson,and S. Khoddam: Adv. Eng. Mater., 2013, vol. 15, pp. 1-3.

    Article  Google Scholar 

  8. 8. R. Kacar: Mater. Design, 2004, vol. 25, pp. 1-9.

    Article  Google Scholar 

  9. 9. F.W. Dean: Mater. Sci. Tech. Ser., 2005, vol. 21, pp. 347-51.

    Article  Google Scholar 

  10. 10. A.M. Elhoud, N.C. Renton, and W.F. Deans: Int. J. of Hydrogen Energ., 2010, vol. 35, pp. 6455-64.

    Article  Google Scholar 

  11. 11. Y. Qi, H. Luo, S. Zheng, C. Chen, Z. Lv, and M. Xiong: Mater. Design, 2014, vol. 58, pp. 234-41.

    Article  Google Scholar 

  12. 12. T.P. Perng and C.J. Altstetter: Metall. Trans. A, 1987, vol. 18A, pp. 123-34.

    Article  Google Scholar 

  13. 13. J. Venezuela, Q. Liu, M. Zhang, Q. Zhou, and A. Atrens: Corros. Sci., 2015, vol. 99, pp. 98-17.

    Article  Google Scholar 

  14. 14. A.M. Brass, J. Chene, and J. Gonzalez: Metall. Trans. A, 1994, vol. 25A, pp. 1159-67.

    Article  Google Scholar 

  15. 15. D. Depover, P. Escobar, E. Wallaert, Z, Zermout, and K. Verbeken: Int. J. Hydrogen Energ., 2014, vol. 39, pp. 4647-56.

    Article  Google Scholar 

  16. 16. M.A. Arafin and J.A. Szpunar: Mater, Sci, Eng, A-Struct., 2011, vol. 528, pp. 4927- 40.

    Article  Google Scholar 

  17. 17. W.C. Luu, P.W. Liu, and J.K. Wu: Corros. Sci., 2002, vol. 44, pp. 1783-91.

    Article  Google Scholar 

  18. 18. C. Zhou, S. Zheng, C. Chen, and G. Lu: Corros. Sci., 2013, vol. 67, pp. 184-92.

    Article  Google Scholar 

  19. 19. W.K. Kim, S.U. Koh, B.Y. Yang, and K.Y. Kim: Corros. Sci., 2008, vol. 50, pp. 3336-42.

    Article  Google Scholar 

  20. 20. C.M. Younes, A.M. Steele, J.A. Nicholson, and C.J. Barnett: Int. J. Hydrogen Energ., 2013, vol. 38, pp. 4864-76.

    Article  Google Scholar 

  21. 21. A.J. Haq, K. Muzaka, D.P. Dunne, A. Calka, and E.V. Pereloma: Int. J. Hydrogen Energ., 2013, vol. 38, pp. 2544-56.

    Article  Google Scholar 

  22. 22. D.P. Escobar, C. Minambres, L. Duprez, K. Verbenken, and M. Verhaege: Corros. Sci., 2011, vol. 53, pp. 3166-76.

    Article  Google Scholar 

  23. 23. J.P. Hirth: Metall. Trans. A, 1980, vol. 11, pp. 861-90.

    Article  Google Scholar 

  24. 24. J. Xu, X.K. Sun, W.X. Chen, and Y.Y. Li: Acta Metall. Mater., 1993, vol. 4, pp. 1455-59.

    Article  Google Scholar 

  25. 25. A. Turnbull, M.S. Maria, and N.D. Thomas: Corros. Sci., 1989, vol. 29, pp. 89-04.

    Article  Google Scholar 

  26. 26. G. Hong and J. Lee: Metall. Trans. A, 1983, vol.14A, pp. 156-58.

    Article  Google Scholar 

  27. 27. W.M. Robertson and A.W. Thompson: Metall. Trans. A, 1980, vol. 11A, pp. 553-57.

    Article  Google Scholar 

  28. 28. A. Kimura and H.K. Birnbaum: Acta Mettall. Mater., 1988, vol. 36, pp. 757-66.

    Article  Google Scholar 

  29. 29. T. Tsuru and R.M. Latanision: Scripta Metall. Mater., 1982, vol. 16, pp. 575-78.

    Article  Google Scholar 

  30. 30. A.M. Brass and A. Chanfreau: Scripta Metall. Mater., 1990, vol. 24, pp. 499-04.

    Article  Google Scholar 

  31. 31. S. Chou and W. Tsai: Mater. Sci. Eng. A-Struct., 1999, vol. A270, pp. 219-24.

    Article  Google Scholar 

  32. 32. B.A. Szost, R.H. Vegter, E.J. Pedro, and R.A. Castillo: Metall. Mater. Trans. A, 2013, vol. 44(10), pp. 4542-50.

    Article  Google Scholar 

  33. 33. F. Huang, J. Liu, Z.J. Deng, J.H. Cheng, Z.H. Lu, and X.G. Li: Mater. Sci. and Eng. A-Struct. 2010, vol. 527, pp. 6997-01.

    Article  Google Scholar 

  34. 34. B.A. Szost, R.H. Vegter, and R.A. Castillo: Mater. Design, 2013, vol. 43, pp. 499-06.

    Article  Google Scholar 

  35. 35. M.F. Stevens and I.M. Bernstein; Metall. Trans. A, 1989, vol. 20A, pp. 909-19.

    Article  Google Scholar 

  36. C. Garcia Mateo, F.G. Caballero, and H.K.D.H. Bhadeshia: ISIJ Int., 2003, vol. 43, pp. 1821–25.

  37. 37. R. Nishimura, D. Shiraishi, and Y. Maeda: Corros. Sci., 2004, vol. 46, pp. 225-43.

    Article  Google Scholar 

  38. 38. V. Olden, C. Thaulow, and R. Johnsen: Mater. Design, 2008, vol. 29, pp. 1934-48.

    Article  Google Scholar 

  39. 39. L.C.D. Fielding, E.J. Song, D.K. Han, H.K.D.H. Bhadeshia, and D.W. Suh: P. Roy. Soc. Lond. A Mat., 2014, vol. 470, pp. 1-13.

    Article  Google Scholar 

  40. 40. A.J Kumnick and H.H. Johnson: Acta Mettall. Mater., 1980, vol. 28, pp. 33-39.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Bobby Kannan.

Additional information

Manuscript submitted April 27, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazum, O., Beladi, H., Timokhina, I.B. et al. Hydrogen Permeation in Nanostructured Bainitic Steel. Metall Mater Trans A 47, 4896–4903 (2016). https://doi.org/10.1007/s11661-016-3677-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3677-2

Keywords

Navigation