Skip to main content
Log in

Phenomenology of Abnormal Grain Growth in Systems with Nonuniform Grain Boundary Mobility

  • Symposium: PTM 2015: Solid-Solid Phase Transformations in Inorganic Materials
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

We have investigated the potential for nonuniform grain boundary mobility to act as a persistence mechanism for abnormal grain growth (AGG) using Monte Carlo Potts model simulations. The model system consists of a single initially large candidate grain embedded in a matrix of equiaxed grains, corresponding to the abnormal growth regime before impingement occurs. We assign a mobility advantage to grain boundaries between the candidate grain and a randomly selected subset of the matrix grains. We observe AGG in systems with physically reasonable fractions of fast boundaries; the probability of abnormal growth increases as the density of fast boundaries increases. This abnormal growth occurs by a series of fast, localized growth events that counteract the tendency of abnormally large grains to grow more slowly than the surrounding matrix grains. Resulting abnormal grains are morphologically similar to experimentally observed abnormal grains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. F. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena. Elsevier, Amsterdam, 2004.

    Google Scholar 

  2. V.Y. Gertsman and R. Birringer: Scripta Metall. Mater., 1994, vol. 30, p. 577–81

    Article  Google Scholar 

  3. C. Lingk and M.E. Gross: J. Appl. Phys., 1998, vol. 84, p. 5547–53

    Article  Google Scholar 

  4. K. Zhang, J. Weertman, and J. Eastman: Appl. Phys. Lett., 2005, vol. 87, p. 061921:1–3

    Google Scholar 

  5. A.L. Etter, T. Baudin, and R. Penelle: Scripta Mater., 2002, vol. 47, p. 725–30

    Article  Google Scholar 

  6. B. Gunther, A. Kumpmann, and H.-D. Kunze: Scripta Metall. Mater., 1992, vol. 27, p. 833–38

    Article  Google Scholar 

  7. F. Ebrahimi, and H. Li: Scripta Mater., 2006, vol. 55, p. 263–66

    Article  Google Scholar 

  8. D.J. Srolovitz, G.S. Grest, and M.P. Anderson: Acta Metall., 1985, vol. 33, p. 2233–47

    Article  Google Scholar 

  9. C. Thompson, H. Frost, and F. Spaepen: Acta Metall., 1987, vol. 33, p. 887–90

    Article  Google Scholar 

  10. K. Janssens and E. A. Holm: TMS Lett., 2005, vol. 2, p. 3–4

    Google Scholar 

  11. Y. Huang and F. J. Humphreys: Acta Mater. 2000, vol 48, p. 2017–30

    Article  Google Scholar 

  12. E. A. Holm, M. A. Miodownik, and A.D. Rollett: Acta Mater., 2003, vol. 51, p. 2701–16

    Article  Google Scholar 

  13. A. D. Rollett and W. W. Mullins: Scripta Mater., 1997, vol. 36, p. 975–80

    Article  Google Scholar 

  14. H. Frost and C. Thompson: J. Electron. Mater., 1988, vol. 17, p. 447–58

    Article  Google Scholar 

  15. S.H. Jung, D.Y. Yoon, and S.J.L. Kang: Acta Mater., 2013, vol. 61, ser. 15, pp. 5685–93.

  16. C.C.F. Kwan, Z. Li, and Z. Wang: Metall. and Mater. Trans. A, 2015, vol. 46A, ser. 10, pp. 4636–45.

  17. A. D. Rollett, D. J. Srolovitz, and M. P. Anderson: Acta Metall., 1989, vol. 37, p. 1227–40

    Article  Google Scholar 

  18. K.-J. Ko, A. D. Rollett, and N.-M. Hwang: Acta Mater., 2010, vol. 58, p. 4414–23

    Article  Google Scholar 

  19. S.J. Dillon, M. Tang, W. C. Carter, and M. P. Harmer, Acta Mater., 2007, vol. 55, p. 6208–18

    Article  Google Scholar 

  20. W. Rheinheimer and M.J. Hoffmann. Scripta Mater, 2015, vol. 101, p. 68-71.

    Article  Google Scholar 

  21. D. Olmsted, E. A. Holm, and S. Foiles: Acta Mater., 2009, vol. 57, p. 3704–13

    Article  Google Scholar 

  22. V. Randle: Interface Sci., 2002, vol. 10, p. 271–77

    Article  Google Scholar 

  23. V. Randle, G. S. Rohrer, H. M. Miller, M. Coleman, and G. T. Owen: Acta Mater., 2008, vol. 56, p. 2363–73

    Article  Google Scholar 

  24. G. S. Grest, M. P. Anderson, D. J. Srolovitz, and A. D. Rollett: Scripta Metall., 1990, vol. 24, p. 661–65

    Article  Google Scholar 

  25. A. Lawrence, J.M. Rickman, M.P. Harmer, and A.D. Rollett: Acta Mater. 2016, vol. 103, pp. 681-87

    Article  Google Scholar 

  26. M. P. Anderson, D. J. Srolovitz, G. S. Grest, and P. Sahni: Acta Metall., 1984, vol. 32, p. 783–91

    Article  Google Scholar 

  27. M. P. Anderson, G. S. Grest, and D. J. Srolovitz: Philos. Mag. B, 1989, vol. 59, p. 293–329

    Article  Google Scholar 

  28. A.D. Rollett and P. Manohar: Continuum Scale Simulation of Engineering Materials, Wiley, 2006, pp. 77–114.

  29. A. B. Bortz, M. H. Kalos, and J. L. Lebowitz: J. Comput. Phys., 1975, vol. 17, p. 10–18

    Article  Google Scholar 

  30. S. Plimpton, A. Thompson, and A. Slepoy: SPPARKS Kinetic Monte Carlo Simulator, http://spparks.sandia.gov/index.html.

  31. S. Plimpton, C. Battaile, M. Chandross, E. Holm, A. Thompson, V. Tikare, G. Wagner, E. Webb, and X. Zhou: “Crossing the Mesoscale No-Man’s Land via Parallel Kinetic Monte Carlo,” Sandia Report SAND2009-6226, September 2009.

  32. N. Rajmohan and J. A. Szpunar: J. Mater. Sci. Eng. A, 2000, vol. 289, pp. 99-108

    Article  Google Scholar 

  33. B. Bollobás and O. Riordan: Probab. Theory Relat. Fields 2006, vol. 136, pp. 417-68

    Article  Google Scholar 

  34. W. B. Hutchinson: Mater. Sci. Forum, 2012, vol. 73, pp. 715-16

    Google Scholar 

  35. C.S. Park, H.K. Park, H.S. Shim, T.W. Na, C.H. Han, and N.M. Hwang: Philos. Mag. Lett., 2015, vol. 95, ser. 4, pp. 220–28.

  36. J. B. Koo, D. Y. Yoon, and M. F. Henry: Metall. Mater. Trans. A, 2000 vol. 31A, p. 1489–91

    Article  Google Scholar 

  37. T.A. Bennett, P. N. Kalu, and A.D. Rollett: Scripta Mater., 2007, vol. 57, ser. 1, pp. 41–44.

  38. J. K. Mason, E. A. Lazar, R. D. MacPherson, and D. J. Srolovitz: Phys. Rev. E, 2015, vol. 92, p. 063308:1–18

    Article  Google Scholar 

  39. D.K. Lee, B.-J. Lee, K.J. Ko, and N.M. Hwang: Mater. Trans., JIM, 2009, vol. 50, pp. 2521–25.

  40. E.A. Holm and P.M. Duxbury: Scripta Mater. 2006, vol. 54, p. 1035-40.

    Article  Google Scholar 

Download references

Acknowledgments

This work was performed at Carnegie Mellon University and was supported by the United States National Science Foundation Award DMR-1307138 and by the John and Claire Bertucci Graduate Fellowship Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth A. Holm.

Additional information

Manuscript submitted January 8, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

DeCost, B.L., Holm, E.A. Phenomenology of Abnormal Grain Growth in Systems with Nonuniform Grain Boundary Mobility. Metall Mater Trans A 48, 2771–2780 (2017). https://doi.org/10.1007/s11661-016-3673-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3673-6

Keywords

Navigation