Skip to main content
Log in

The Role of Thermomechanical Routes on the Distribution of Grain Boundary and Interface Plane Orientations in Transformed Microstructures

  • Symposium: PTM 2015: Solid-Solid Phase Transformations in Inorganic Materials
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In the current study, a series of thermomechanical routes were used to produce different microstructures (i.e., ferrite and martensite) in low-carbon low alloy steels. The five-parameter grain boundary character distribution was measured for all microstructures. The thermomechanical processing route altered the texture of the fully ferritic microstructure and significantly influenced the anisotropy of the grain boundary character distribution. Generally, the population of (111) planes increased with an increase in the γ-fiber texture for the ferritic microstructure, but it did not change the shape of the grain boundary plane distribution at specific misorientations. The most commonly observed boundaries in the fully ferritic structures produced through different routes were {112} symmetric tilt boundaries with the Σ3 = 60 deg/[111] misorientation; this boundary also had a low energy. However, the grain boundary plane distribution was significantly changed by the phase transformation path (i.e., ferrite vs martensite) for a given misorientation. In the martensitic steel, the most populous Σ3 boundary was the {110} symmetric tilt boundary. This results from the crystallographic constraints associated with the shear transformation (i.e., martensite) rather than the low-energy interface that dominates in the diffusional phase transformation (i.e., ferrite).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. T. Watanabe: Trans Japan Inst Metals, 1986, vol. 27, pp. 73-82.

    Google Scholar 

  2. V. Randle: Acta Metall., 1999, vol. 47, pp. 4187-96.

    Google Scholar 

  3. H. Beladi, G.S. Rohrer, A.D. Rollett, V. Tari, P.D. Hodgson: Acta Mater., 2014, vol. 63, pp. 86-98.

    Article  Google Scholar 

  4. H. Beladi, Q. Chao, G.S. Rohrer: Acta Mater., 2014, vol. 80, pp. 478-89.

    Article  Google Scholar 

  5. H. Beladi, G.S. Rohrer: Acta Mater., 2013, vol. 61, pp. 1404-12.

    Article  Google Scholar 

  6. H. Beladi, G.S. Rohrer: Metall. Mater. Trans. A, 2013, vol. 44, pp. 115-24.

    Article  Google Scholar 

  7. D.Q. Bai, S. Yue, W. P. Sun and J.J. Jonas: Metall. Mater. Trans. A, 1993, vol. 24, pp. 2151-59.

    Article  Google Scholar 

  8. K.J. Irvine: J of Iron Institute, 1967, pp. 161-67.

  9. G.S. Rohrer, D.M. Saylor, B. El Dasher, B.L. Adams, A.D. Rollett, P. Wynblatt: Zeitschrift Für Metallkde., 2004, vol. 95, pp. 1-18.

    Article  Google Scholar 

  10. R.K. Ray, J.J. Jonas: Inter. Mater. Rev., 1990, vol. 35, pp. 1-36.

    Article  Google Scholar 

  11. G.J. Baczynski, J.J. Jonas, L.E. Collins, Metall. Mater. Trans. A, 1999, vol. 30, pp. 3045-54.

    Article  Google Scholar 

  12. L Kestens, JJ Jonas: ASM Handbook, SL Semiatin, Ed., Metalworking: bulk forming, 2005, vol. 14A, pp. 685-700.ASM International, Materials Park,

    Google Scholar 

  13. H.K.D.H. Bhedeshia: Bainite in Steels, 2nd ed., IOM Communications Ltd., London, 2001.

    Google Scholar 

  14. R.E. Garcia, M.D. Vaudin: Acta Mater., 2007, vol. 55, pp. 5728-35.

    Article  Google Scholar 

  15. B. Gale, R.A. Hunt and M. McLean: Philos. Mag., 1972, vol. 25, pp. 947-60.

    Article  Google Scholar 

  16. J.P. Hirth and L. Lothe: Theory of Dislocations, 2nd ed., Krieger Publishing Company, Florida, 1982, pp. 274-366.

    Google Scholar 

  17. H. Beladi, N.T. Nuhfer, G.S. Rohrer: Acta Mater., 2014, vol. 70, pp. 281-89.

    Article  Google Scholar 

  18. P.M. Kelly, A. Jostsons, R.G. Blake: Acta Mater., 1990, vol. 38, 1990, pp. 1075-81.

    Article  Google Scholar 

  19. P.M. Kelly: Acta Metall., 1965, vol. 13, pp. 635-46.

    Article  Google Scholar 

  20. F. Duflos, B. Cantor: Acta Metall., 1982, vol. 30, pp. 323-42.

    Article  Google Scholar 

  21. A. Van Gent, F.C. Van Doorn, E.J. Mittermeijer: Metall. Trans. A, 1985, vol. 16, pp. 1371-84.

    Article  Google Scholar 

  22. J.M. Chilton, C.J. Barton, G.R. Speich: J. Iron Steel Inst., 1970, vol. 208, pp. 184.

    Google Scholar 

  23. D.M. Saylor, A. Morawiec, G.S. Rohrer: Acta Mater., 2003, vol. 51, pp. 3675-86.

    Article  Google Scholar 

  24. D.M. Saylor, B.S. El-Dasher, T. Sano, G.S. Rohrer: J Amer. Cer. Soc., 2004, vol. 87, pp. 670-76.

    Article  Google Scholar 

  25. J. Li, S.J. Dillon, G.S. Rohrer: Acta Mater., 2009, vol. 57, pp. 4304-4311.

    Article  Google Scholar 

  26. D.M. Saylor, B.S. El-Dasher, A.D. Rollett, G.S. Rohrer: Acta Mater., 2004, vol. 52, pp. 3649-55.

    Article  Google Scholar 

  27. S.J. Dillon, G.S. Rohrer: Acta Mater., vol. 57, 2009, pp. 1-7.

    Article  Google Scholar 

Download references

Acknowledgments

The work at Deakin University was supported through grants provided by Australian Research Council. This work was carried out with the support of the Deakin Advanced Characterization Facility. G.S.R. acknowledges support from the ONR-MURI program (Grant No. N00014-11-0678) and the use of the Materials Characterization Facility at Carnegie Mellon University supported by Grant MCF-677785.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Beladi.

Additional information

Manuscript submitted March 28, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beladi, H., Rohrer, G.S. The Role of Thermomechanical Routes on the Distribution of Grain Boundary and Interface Plane Orientations in Transformed Microstructures. Metall Mater Trans A 48, 2781–2790 (2017). https://doi.org/10.1007/s11661-016-3630-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3630-4

Keywords

Navigation