Skip to main content
Log in

A Modified Approach to Modeling of Diffusive Transformation Kinetics from Nonisothermal Data and Experimental Verification

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

An inverse model is proposed to construct the mathematical relationship between continuous cooling transformation (CCT) kinetics with constant rates and the isothermal one. The kinetic parameters in JMAK equations of isothermal kinetics can be deduced from the experimental CCT kinetics. Furthermore, a generalized model with a new additive rule is developed for predicting the kinetics of nucleation and growth during diffusional phase transformation with arbitrary cooling paths based only on CCT curve. A generalized contribution coefficient is introduced into the new additivity rule to describe the influences of current temperature and cooling rate on the incubation time of nuclei. Finally, then the reliability of the proposed model is validated using dilatometry experiments of a microalloy steel with fully bainitic microstructure based on various cooling routes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. 1. F. Liu, C. Yang, G. Yang and Y. Zhou, Acta Materialia 2007, vol. 55, pp. 5255-5267.

    Article  Google Scholar 

  2. 2. M. Umemoto, K. Horiuchi and I. Tamura, Transactions of the Iron and Steel Institute of Japan 1983, vol. 23, pp. 690-695.

    Article  Google Scholar 

  3. 3. M. Avrami, The Journal of Chemical Physics 1941, vol. 9, p. 177-184.

    Article  Google Scholar 

  4. 4. M. Avrami, The Journal of Chemical Physics 1940, vol. 8, p. 212-224.

    Article  Google Scholar 

  5. 5. M. Avrami, The Journal of Chemical Physics 1939, vol. 7, p. 1103-12.

    Article  Google Scholar 

  6. 6. X. J. Chen, N. M. Xiao, D. Z. Li, G. Y. Li and G.Y. Sun, Model Simul Mater Sc 2014, vol. 22, p. 065005.

    Article  Google Scholar 

  7. 7. E. B. Hawbolt, B. Chau and J. K. Brimacombe, Metallurgical Transactions A 1983, vol. 14, pp. 1803-1815.

    Article  Google Scholar 

  8. 8. A. F. Manchón-Gordón, J. S. Blázquez, C. F. Conde and A. Conde, Journal of Alloys and Compounds 2016, vol. 675, pp. 81-85.

    Article  Google Scholar 

  9. 9. PN Kalu and DR Waryoba, Materials Science and Engineering: A 2007, vol. 464, pp. 68-75.

    Article  Google Scholar 

  10. 10. J. W. Cahn, Acta Metallurgica 1956, vol. 4, pp. 572-5.

    Article  Google Scholar 

  11. 11 P. R. Woodard, S. Chandrasekar and H. T. Y. Yang, Metallurgical and materials transactions B 1999, vol. 30, pp. 815-822.

    Article  Google Scholar 

  12. 12. P. Carlone, G. S. Palazzo and R. Pasquino, Computers & mathematics with applications 2010, vol. 59, pp. 585-594.

    Article  Google Scholar 

  13. 13. M. Umemoto, A. Hiramatsu, A. Moriya, T. Watanabe, S. Nanba, N. Nakajima, G. Anan and Y. C. Higo, ISIJ international 1992, vol. 32, pp. 306-315.

    Article  Google Scholar 

  14. 14. T. Y. Hsu, Current Opinion in Solid State and Materials Science 2005, vol. 9, pp. 256-268.

    Article  Google Scholar 

  15. 15. J. S. Ye and T. Y. Hsu, ISIJ International 2004, vol. 44, pp. 777-779.

    Article  Google Scholar 

  16. 16. Ø. Grong and O. R. Myhr, Acta Materialia 2000, vol. 48, pp. 445-452.

    Article  Google Scholar 

  17. 17. B. I. BjØrneklett, Ø. Grong, O. R. Myhr and A. O. Kluken, Acta Materialia 1998, vol. 46, pp. 6257-6266.

    Article  Google Scholar 

  18. 18. F. Liu, F. Sommer and E. J. Mittemeijer, J Mater Res 2004, vol. 19, pp. 2586-2596.

    Article  Google Scholar 

  19. 19. A. T. W. Kempen, F. Sommer and E. J. Mittemeijer, J Mater Sci 2002, vol. 37, pp. 1321-1332.

    Article  Google Scholar 

  20. 20. E. J. Mittemeijer, J Mater Sci 1992, vol. 27, pp. 3977-3987.

    Article  Google Scholar 

  21. 21. P. R. Rios, Acta Materialia 2005, vol. 53, pp. 4893-4901.

    Article  Google Scholar 

  22. 22. T. Jia, Z. Y. Liu, X. Q. Yuan, X. H. Liu and G. D. Wang, Mater Sci Tech Ser 2007, vol. 23, pp. 780-786.

    Article  Google Scholar 

  23. 23. A. F. Manchón-Gordón, J. S. Blázquez, C. F. Conde and A. Conde, Journal of Alloys and Compounds 2016, vol. 675, pp. 81-85.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge that this work was supported by a scholarship from the China Scholarship Council (CSC), National Natural Science Foundation of China (61232014, 11202072), and the Open Foundation of State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body (Hunan University, China).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Namin Xiao or Guangyao Li.

Additional information

Manuscript submitted January 10, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Xiao, N., Cai, M. et al. A Modified Approach to Modeling of Diffusive Transformation Kinetics from Nonisothermal Data and Experimental Verification. Metall Mater Trans A 47, 4732–4740 (2016). https://doi.org/10.1007/s11661-016-3608-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3608-2

Keywords

Navigation