Skip to main content
Log in

β-Ti Grain Refinement Via α-Precipitation

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The present work explores the impact of α precipitates on β recrystallization following hot deformation of Ti-5Al-5Mo-5V-3Cr with grains larger than 1 mm. A single hot rolling pass of 36 pct reduction was conducted on an aged microstructure containing α precipitates at a temperature well below the β transus temperature. After annealing, a uniformly recrystallized structure with a grain size of ~100 µm is formed. The prior β grain boundaries can be readily identified and it is seen that the primary β grains have been replaced by grains displaying a spread of correlated misorientation angles extending up to the highest allowable values. The annealing comprises two stages. The first stage involves normal β subgrain growth limited by the Zener pinning force of the unstable α precipitates. The second stage corresponds to the onset of β recrystallization at the point where the Zener pinning force drops due to dissolution of the α precipitates. This leads to a uniform distribution of site saturated recrystallization nuclei.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. R.R. Boyer, and R.D. Briggs: J. Mater. Eng. Perform., 2005, vol. 14, pp. 681-685.

    Article  Google Scholar 

  2. G. Lütjering and J.C. Williams: Titanium. Engineering Materials and Processes, 2nd ed, Springer, New York, 2007.

    Google Scholar 

  3. M.J Donachie: Titanium, A technical Guide, 2nd ed, ASM International, 2007.

    Google Scholar 

  4. I. Weiss and S.L. Semiatin: Mater. Sci. Eng. A, 1998, vol. 243, pp. 46-65.

    Article  Google Scholar 

  5. Y. Kawabe and S. Muneki: Beta Titanium Alloys in the 1990’s, TMS, Warrendale, 1993.

    Google Scholar 

  6. K. Le Biavant, S. Pommier, and C. Prioul: Fatigue Fract. Eng. Mater. Struct., 2002, vol. 25, pp. 527-545.

    Article  Google Scholar 

  7. F. Bridier, P. Villechaise, and J. Mendez: Acta Mater., 2008, vol. 56, pp. 3951-3962.

    Article  Google Scholar 

  8. A.P. Woodfield, M.D. Gorman, R.R. Corderman, I.A. Sutliff, and B. Yamrom: Titanium ‘95 Science and Technology, Proceedings of the Eighth World Conference on Titanium 1995, The Institute of Materials, Birmingham, 1996.

  9. L. Germain, N. Gey, M. Humbert, P. Vo, M. Jahazi, and P. Bocher: Acta Mater., 2008, vol. 56, pp. 4298-4308.

    Article  Google Scholar 

  10. D.G. Leo Prakash, P. Honniball, D. Rugg, P.J. Withers, J. Quinta da Fonseca, and M. Preuss: Acta Mater., 2013, vol. 61, pp. 3200-3213.

    Article  Google Scholar 

  11. S.L. Semiatin, S.V. Seetharaman, and I. Weiss: JOM, 1997, vol. 49, pp. 33-39.

    Article  Google Scholar 

  12. H.M. Flower: Mater. Sci. Tech., 1990, vol. 6, pp. 1082-1092.

    Article  Google Scholar 

  13. D. Banerjee, A. Pilchak, and J.C. Williams: Mater. Sci. Forum, 2012, vol. 710, pp. 66-84.

    Article  Google Scholar 

  14. D. Banerjee, and J.C. Williams: Acta Mater, 2013, vol. 61, pp. 844-879.

    Article  Google Scholar 

  15. T. Furuhara, Y. Toji, H. Abe, and T. Maki: Mater. Sci. Forum, 2003, vol. 426-432, pp. 655-660.

    Article  Google Scholar 

  16. F. Montheillet, D. Dajno, N. Come, E. Gautier, A. Simon, P. Audrerie, A.-M. Chaze, and C. Levaillant: Titanium ‘92: Science and Technology, TMS, Warrendale, 1992.

    Google Scholar 

  17. T. Furuhara, B. Poorganji, H. Abe, and T. Maki: JOM, 2007, vol. 59, pp. 64-67.

    Article  Google Scholar 

  18. V.V. Tetyukhin, I.V. Levin, and N.I. Levina: US Patent, No. US 2013/0233455 A1, 12 Sept. 2013.

  19. F.J. Humphreys and M. Hatherly: Recrystallization and related annealing phenomena, 2nd ed, Elsevier Science, New York, 2004.

    Google Scholar 

  20. J.C. Fanning: J. Mater. Eng. Perform., 2005, vol. 14, pp. 788-791.

    Article  Google Scholar 

  21. S.L. Nyakana, J.C. Fanning, and R.R. Boyer: J. Mater. Eng. Perform., 2005, vol. 14, pp. 799-811.

    Article  Google Scholar 

  22. N.G. Jones, R.J. Dashwood, D. Dye, and M. Jackson: Mater. Sci. Eng. A, 2008, vol. 490, pp. 369-377.

    Article  Google Scholar 

  23. M.G. Glavicic, P.A. Kobryn, F. Spadafora, and S.L. Semiatin: Mat. Sci. Eng. A, 2003, vol. 346, pp. 8-18.

    Article  Google Scholar 

  24. M. Harper, R. Williams, G.B. Viswanathan, J. Tiley, R. Banerjee, D.J. Evans, and H.L. Fraser: Ti-2003, Science and Technology: Proceedings of the 10th World Conference on Titanium, Wiley-VCH, Hamburg, 2004.

  25. S.K. Kar, A. Ghosh, N. Fulzele, and A. Bhattacharjee: Mater. Charact., 2013, vol. 81, pp. 37-48.

    Article  Google Scholar 

  26. S. Nag, R. Banerjee, R. Srinivasan, J.Y. Hwang, M. Harper, and H.L. Fraser, Acta Mater., 2009, vol. 57, pp. 2136-2147.

    Article  Google Scholar 

  27. E.E. Underwood: J. Microsc., 1969, vol. 89, no. 2, pp. 161-180.

    Article  Google Scholar 

  28. M. Dikovits, C. Poletti, and F. Warchomicka: Metall. Mater. Trans. A, 2013, vol. 45, pp. 1586-1596.

    Article  Google Scholar 

  29. I. Weiss, F.H. Froes, and D. Eylon: Metall. Trans., 1984, vol. 15, pp. 1493-1496.

    Article  Google Scholar 

  30. J.K. Mackenzie: Biometrika, 1958, vol. 45, pp. 229-240.

    Article  Google Scholar 

  31. S. Kobayashi and S. Zaefferer: Intermetallics, 2006, vol. 14, pp. 1252-1256.

    Article  Google Scholar 

  32. P.A. Manohar, M. Ferry, and T. Chandra: ISIJ Int., 1998, vol. 38, pp. 913-924.

    Article  Google Scholar 

  33. B.R. Patterson and Y. Liu: Metall. Trans. A, 1992, vol. 23, pp. 2481-2482.

    Article  Google Scholar 

  34. R.T. DeHoff and F.N. Rhines: Trans. TMS-AIME, 1961, vol. 221, pp. 975-982.

    Google Scholar 

  35. N. Ryum, O. Hunderi, and E. Nes: Scr. Metall., 1983, vol. 17, pp. 1281-1283.

    Article  Google Scholar 

  36. F.J. Humphreys: Acta Mater., 1997, vol. 45, pp. 4231-4240.

    Article  Google Scholar 

  37. F.J. Humphreys: Acta Mater., 1997, vol. 45, pp. 5031-5039.

    Article  Google Scholar 

  38. D. Dunst, R. Dendievel, and H. Mecking: Mater. Sci. Forum, 1994, vol. 157-162, pp. 665-672.

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from the Australian Research Council through the Centre of Excellence for Design in Light Metals, and use of the Deakin Advanced Characterisation Facility. Also, thanks to Mr Lynton Leigh for his assistance in the heat treatment and rolling process.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Ghaderi.

Additional information

Manuscript submitted March 25, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghaderi, A., Hodgson, P.D. & Barnett, M.R. β-Ti Grain Refinement Via α-Precipitation. Metall Mater Trans A 47, 1322–1330 (2016). https://doi.org/10.1007/s11661-015-3299-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-3299-0

Keywords

Navigation