Skip to main content
Log in

Microstructure and Texture Evolution During Symmetric and Asymmetric Rolling of a Martensitic Ti-6Al-4V Alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In the current study, the effect of deformation mode (i.e., symmetric vs asymmetric rolling) on the extent of grain refinement and texture development in Ti-6Al-4V was examined through warm rolling of a martensitic starting microstructure. During rolling, the initial martensitic lath structure was progressively fragmented, primarily through continuous dynamic recrystallization. This eventually led to an ultrafine-grained (UFG) microstructure composed of equiaxed grains with a mean size of 180 to 230 nm, mostly surrounded by high-angle grain boundaries. Depending on the rolling reduction and deformation mode (symmetric and asymmetric), the rolled specimens displayed different layer morphologies throughout the specimen thickness: a fully UFG surface layer, a partial UFG transition layer, and a partially fragmented lath interior layer. Due to a higher level of effective strain and continuous rotation of the principle axis, asymmetric rolling resulted in a greater extent of grain refinement compared with symmetric rolling at a given thermomechanical condition. A bulk UFG structure was successfully obtained using 70 pct asymmetric rolling. In addition, the rolling texture exhibited various characteristics throughout the thickness due to a different combination of shear and compressive strains. Principally, the basal texture component was displaced from the normal toward rolling direction during asymmetric rolling, differing from the symmetric rolling textures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. L.R. Saitova, H.W. Höppel, M. Göken, I.P. Semenova and R.Z. Valiev: Int. J. Fatigue, 2009, vol. 31, pp. 322-31.

    Article  Google Scholar 

  2. A.V. Sergueeva, V.V. Stolyarov, R.Z. Valiev and A.K. Mukherjee: Mater. Sci. Eng. A, 2002, vol. 323, pp. 318-25.

    Article  Google Scholar 

  3. Y. Estrin and A. Vinogradov: Acta Mater., 2013, vol. 61, pp. 782-817.

    Article  Google Scholar 

  4. Y.G. Ko, W.S. Jung, D.H. Shin and C.S. Lee: Scripta Mater., 2003, vol. 48, pp. 197-202.

    Article  Google Scholar 

  5. S. Zherebtsov, A. Mazur, G. Salishchev and W. Lojkowski: Mater. Sci. Eng. A, 2008, vol. 485, pp. 39-45.

    Article  Google Scholar 

  6. S.V. Zherebtsov, G.A. Salishchev, R.M. Galeyev, O.R. Valiakhmetov, S.Y. Mironov and S.L. Semiatin: Scripta Mater., 2004, vol. 51, pp. 1147-51.

    Article  Google Scholar 

  7. N. Tsuji and T. Maki: Scripta Mater., 2009, vol. 60, pp. 1044-49.

    Article  Google Scholar 

  8. D. Yang, P. Cizek, P.D. Hodgson and C.E. Wen: Scripta Mater., 2010, vol. 62, pp. 321-24.

    Article  Google Scholar 

  9. S. Zherebtsov, E. Kudryavtsev, S. Kostjuchenko, S. Malysheva and G. Salishchev: Mater. Sci. Eng. A, 2012, vol. 536, pp. 190-96.

    Article  Google Scholar 

  10. Q. Chao, P.D. Hodgson and H. Beladi: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 2659-71.

    Article  Google Scholar 

  11. C.H. Park, J.H. Kim, J.T. Yeom, C.S. Oh, S.L. Semiatin and C.S. Lee: Scripta Mater., 2013, vol. 68, pp. 996-99.

    Article  Google Scholar 

  12. H. Matsumoto, L. Bin, S.H. Lee, Y. Li, Y. Ono and A. Chiba: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 3245-60.

    Article  Google Scholar 

  13. I. Weiss, F.H. Froes, D. Eylon and G.E. Welsch: Metall. Trans. A, 1986, vol. 17A, pp. 1935-47.

    Article  Google Scholar 

  14. T. Seshacharyulu, S.C. Medeiros, J.T. Morgan, J.C. Malas and W.G. Frazier: Scripta Mater., 1999, vol. 41, pp. 283-88.

    Article  Google Scholar 

  15. S.L. Semiatin, V. Seetharaman and I. Weiss: Mater. Sci. Eng. A, 1999, vol. 263, pp. 257-71.

    Article  Google Scholar 

  16. C.H. Park, Y.G. Ko, J.W. Park and C.S. Lee: Mater. Sci. Eng. A, 2008, vol. 496, pp. 150-58.

    Article  Google Scholar 

  17. S.L. Semiatin and T.R. Bieler: Acta Mater., 2001, vol. 49, pp. 3565-73.

    Article  Google Scholar 

  18. E.B. Shell and S.L. Semiatin: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 3219-29.

    Article  Google Scholar 

  19. S.I. Oh, S.L. Semiatin and J.J. Jonas: Metall. Trans. A, 1992, vol. 23A, pp. 963-75.

    Article  Google Scholar 

  20. D. Orlov, A. Pougis, R. Lapovok, L.S. Toth, I.B. Timokhina, P.D. Hodgson, A. Haldar and D. Bhattacharjee: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 4346-59.

    Article  Google Scholar 

  21. M.H. Cai, S. Singh Dhinwal, Q.H. Han, Q. Chao and P.D. Hodgson: Mater. Sci. Eng. A, 2013, vol. 583, pp. 205-09.

    Article  Google Scholar 

  22. K.H. Kim and D.N. Lee: Acta Mater., 2001, vol. 49, pp. 2583-95.

    Article  Google Scholar 

  23. J. Sidor, A. Miroux, R. Petrov and L. Kestens: Acta Mater., 2008, vol. 56, pp. 2495-5507.

    Article  Google Scholar 

  24. B. Beausir, S. Biswas, D.I. Kim, L.S. Tóth and S. Suwas: Acta Mater., 2009, vol. 57, pp. 5061-77.

    Article  Google Scholar 

  25. X. Huang, K. Suzuki, A. Watazu, I. Shigematsu and N. Saito: Mater. Sci. Eng. A, 2008, vol. 488, pp. 214-20.

    Article  Google Scholar 

  26. M. Diot, J.J. Fundenberger, M.J. Philippe, J. Wégria and C. Esling: Scripta Mater., 1998, vol. 39, pp. 1623-30.

    Article  Google Scholar 

  27. Z. Li, L. Fu, B. Fu and A. Shan: Mater. Sci. Eng. A, 2012, vol. 558, pp. 309-18.

    Article  Google Scholar 

  28. S. Zaefferer: Mater. Sci. Eng. A, 2003, vol. 344, pp. 20-30.

    Article  Google Scholar 

  29. O. Engler and V. Randle: Introduction to Texture Analysis : Macrotexture, Microtexture, and Orientation Mapping, 2nd ed., Taylor and Francis, Hoboken, 2009.

    Book  Google Scholar 

  30. Y.N. Wang and J.C. Huang: Mater. Chem. Phys., 2003, vol. 81, pp. 11-26.

    Article  Google Scholar 

  31. P. Ari-Gur and S.L. Semiatin: Mater. Sci. Eng. A, 1998, vol. 257, pp. 118-27.

    Article  Google Scholar 

  32. M. Peters and G. Lütjering: Proc. of 4th Int. Conf. on Titanium, Kyoto, Japan, H. Kimura and O. Izumi, eds., TMS-AIME, Warrendale, PA, 1980, pp. 925–35.

  33. K. Morii, H. Mecking, G. Lütjering and Y. Nakayama: Scripta Metall., 1986, vol. 20, pp. 1795-800.

    Article  Google Scholar 

  34. M.J. Philippe, C. Esling and B. Hocheid: Texture Microstruct., 1988, vol. 7, pp. 265-301.

    Article  Google Scholar 

  35. M.J. Philippe, M. Serghat, P. Van Houtte and C. Esling: Acta Metall. Mater., 1995, vol. 43, pp. 1619-30.

    Article  Google Scholar 

  36. D. Dunst, R. Dendievel and H. Mecking: Mater. Sci. Forum, 1994, vol. 157-162, pp. 665-72.

    Article  Google Scholar 

  37. G.C. Obasi, S. Birosca, D.G. Leo Prakash, K. Quinta da Fonseca and M. Preuss: Acta Mater., 2012, vol. 60, pp. 6013-24.

    Article  Google Scholar 

  38. S. Roy and S. Suwas: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 3303-21.

    Article  Google Scholar 

  39. M. Peters, A. Gysler and G. Lütjering: Metall. Trans. A, 1984, vol. 15A, pp. 1597-1605.

    Article  Google Scholar 

  40. M.A.W. Lowden and W.B. Hutchinson: Metall. Trans. A, 1975, vol. 6A, pp. 441-48.

    Article  Google Scholar 

  41. H. Mecking and D. Dunst: Mater. Sci. Eng. A, 1994, vol. 175, pp. 55-62.

    Article  Google Scholar 

  42. H. Beladi, Q. Chao and G.S. Rohrer: Acta Mater., 2014, vol. 80, pp. 478-89.

    Article  Google Scholar 

  43. N. Stanford and P.S. Bate: Acta Mater., 2004, vol. 52, pp. 5215-24.

    Article  Google Scholar 

  44. G.C. Obasi, S. Birosca, J. Quinta da Fonseca and M. Preuss: Acta Mater., 2012, vol. 60, pp. 1048-58.

    Article  Google Scholar 

  45. S.B. Kang, B.K. Min, H.W. Kim, D.S. Wilkinson and J. Kang: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 3141-49.

    Article  Google Scholar 

  46. P.J. Hurley, B.C. Muddle and P.D. Hodgson: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 1507-17.

    Article  Google Scholar 

  47. H. Beladi, G.L. Kelly and P.D. Hodgson: Int. Mater. Rev., 2007, vol. 52, pp. 14-28.

    Article  Google Scholar 

  48. T.R. Bieler and S.L. Semiatin: Int. J. Plast., 2002, vol. 18, pp. 1165-89.

    Article  Google Scholar 

  49. M.A. Imam and C.M. Gilmore: Metall. Trans. A, 1983, vol. 14A, pp. 233-40.

    Article  Google Scholar 

  50. W.F. Hosford and R.M. Caddell: Metal Forming: Mechanics and Metallurgy, 4th ed., Cambridge University Press, Cambridge, 2011.

    Book  Google Scholar 

Download references

Acknowledgments

This research was supported by grants through the Australian Research Council including an ARC Laureate Fellowship (P.D.H.). The authors would also like to thank Professor Bevis Hutchinson and Professor John Duncan for valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Chao.

Additional information

Manuscript submitted June 2, 2015.

Appendix

Appendix

The level of effective plastic strain can be generally estimated using the equivalent von Mises strain (ε VM) given by:

$$ \varepsilon_{\text{VM}} = \sqrt {\frac{2}{9}\left[ {(\varepsilon_{x} - \varepsilon_{y} )^{2} + (\varepsilon_{y} - \varepsilon_{z} )^{2} + (\varepsilon_{x} - \varepsilon_{z} )^{2} + 6(\gamma_{xy}^{2} + \gamma_{xz}^{2} + \gamma_{yz}^{2} )} \right]} , $$
(1)

where ε i=x, y, z , γ ij=yz, xz, xy represent the normal and shear strain in x, y, and z directions of an object. During a rolling process, the x, y, and z refers to RD, TD, and ND, respectively. For conventional symmetric rolling, the plastic region is thinned by the compressive strain in ND and free to expand in RD. The lateral expansion in TD is restricted by non-deforming material in forward and backward direction of roll gap and the friction between the plate and rolls.[50] Hence, the deformation state can be approximately reduced to a two-dimensional plane strain, where ε x  = −ε z , ε y  = 0, and γ yz  = γ xy  = 0. The form of Eq. [1] can be reduced to

$$ \begin{aligned} \varepsilon _{{{\text{VM}}}} & = \sqrt {\frac{2}{9}\left[ {(\varepsilon _{x} )^{2} + (\varepsilon _{z} )^{2} + (\varepsilon _{x} - \varepsilon _{z} )^{2} + 6\gamma _{{xz}}^{2} } \right]} \\ \; = \frac{2}{{\sqrt 3 }}\sqrt {\varepsilon _{z}^{2} + \gamma _{{xz}}^{2} } . \\ \end{aligned} $$
(2)

In the current study, a shear strain in the RD–ND plane (γ xz ) was taken into account for asymmetric rolling and the surface region of symmetric rolling due to the friction between the plate and rolls,[22] whereas no shear strain was considered at the mid-thickness of symmetrically rolled plate. The compressive strain ε z can be readily calculated through the rolling thickness reduction. However, the estimation of shear strain γ xz is more complicated as the frictional shear stress and resultant plastic deformation depends on the geometry of rolls and plate, rolling conditions such as rolling speed, reduction, and lubrication, as well as the elastic/plastic response of the deforming material under a specific condition, etc. Here, a method proposed by Berusir et al.[24] was employed to calculate the shear coefficient (K) through measuring the shear angle (θ f ) of some vertical inserts in the as-rolled plates. The shear coefficient can be determined by

$$ K = \gamma_{xz} /\varepsilon_{z} {{ = h_{f} } \mathord{\left/ {\vphantom {{ = h_{f} } {(h_{i} - h_{f} )\tan (\theta_{f} )}}} \right. \kern-0pt} {(h_{i} - h_{f} )\tan (\theta_{f} )}}, $$
(3)

where h i and h f represent the initial and final thickness of plates subjected to rolling, respectively. The stress/strain state during the rolling process is expected to be well presented using this method, as probably all external and internal factors affecting the shear and normal strains are reflected through the shear angle of vertical inserts made of the identical material. By combining Eqs. [2] and [3], the effective strain can be calculated:

$$ \varepsilon_{\text{VM}} = \frac{2}{\sqrt 3 }\varepsilon_{z} {\sqrt{1 + \left[ {{{h_{f} \tan (\theta_{f} )} \mathord{\left/ {\vphantom {{h_{f} \tan (\theta_{f} )} {(h_{i} - h_{f} )}}} \right. \kern-0pt} {(h_{i} - h_{f} )}}} \right]^{2} }}. $$
(4)

Apart from the current method, Kang et al.[45] proposed an equation to determine the true shear strain based on a geometrical analysis. The shear strain can be expressed as

$$ \gamma_{xz} = {1 \mathord{\left/ {\vphantom {1 {(h_{i} + h_{f} )\left\{ {R_{1} \cos^{ - 1} \left[ {1 - (h_{i} - h_{f} )/2R_{1} } \right] - R_{2} \cos^{ - 1} \left[ {1 - (h_{i} - h_{f} )/2R_{2} } \right]} \right\}}}} \right. \kern-0pt} {(h_{i} + h_{f} )\left\{ {R_{1} \cos^{ - 1} \left[ {1 - (h_{i} - h_{f} )/2R_{1} } \right] - R_{2} \cos^{ - 1} \left[ {1 - (h_{i} - h_{f} )/2R_{2} } \right]} \right\}}}, $$
(5)

where R 1 and R 2 are the radii of larger and smaller rolls, respectively. Sidor et al.[23] computed the effective strain during asymmetric rolling of an aluminum alloy using Eqs. [2] and [5]. However, several assumptions were taken for this geometric calculation method, which may lead to overestimation of the shear strain.[23,45] In addition, this method only allows the estimation of the total imposed strain for a whole specimen whereas our approach enables a more precise measurement of the effective strain for a particular layer throughout the plate thickness. Figure 10(c) illustrated the equivalent strain calculated using each method for different rolling conditions.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chao, Q., Hodgson, P.D. & Beladi, H. Microstructure and Texture Evolution During Symmetric and Asymmetric Rolling of a Martensitic Ti-6Al-4V Alloy. Metall Mater Trans A 47, 531–545 (2016). https://doi.org/10.1007/s11661-015-3211-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-3211-y

Keywords

Navigation