Skip to main content
Log in

Effect of Twinning on Microstructural Evolution During Dynamic Recrystallisation of Hot Deformed As-Cast Austenitic Stainless Steel

  • Communication
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

An as-cast austenitic stainless steel was hot deformed at 1173 K, 1223 K, and 1373 K (900 °C, 950 °C, and 1100 °C) to a strain of 1 with a strain rate of 0.5 or 5 s−1. The recrystallised fraction is observed to be dependent on dynamic recrystallisation (DRX). DRX grains nucleated at the initial stages of recrystallization have similar orientation to that of the deformed grains. With increasing deformation, Cube texture dominates, mainly due to multiple twinning and grain rotation during deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. S. Gelder, B. Buchmayr, B. Linzer, G. Hohenbichler, Steel Res. Int. 82 (2011) 1213–9.

    Article  Google Scholar 

  2. M. Daamen, B. Wietbrock, S. Richter, G. Hirt, Steel Res. Int. 82 (2011) 70–5.

    Article  Google Scholar 

  3. D. Raabe, R. Degenhardt, R. Sellger, W. Klos, M. Sachtleber, L. Ernenputsch, Steel Res. Int. 79 (2008) 440–4.

    Google Scholar 

  4. C.P. Manning, R.J. Fruehan, JOM 53 (2001) 36–43.

    Article  Google Scholar 

  5. M. Suzuki, H. Mizukami, T. Kitagawa, K. Kawakami, S. Uchida, Y. Komatsu, ISIJ Int. 31 (1991) 254–61.

    Article  Google Scholar 

  6. G. K. Mandal, N. Stanford, P. Hodgson, J. H. Beynon, Mat. Sci. Eng. A 556 (2012) 685–95.

    Article  Google Scholar 

  7. Z. Yanushkevich, A. Mogucheva, M. Tikhonova, A. Belyakov, R. Kaibyshev, Mater. Charact. 62 (2011) 432–7.

    Article  Google Scholar 

  8. T. Sakai, J.J. Jonas, Acta Metall. 32 (1984) 189–209.

    Article  Google Scholar 

  9. A. Belyakov, H. Miura, T. Sakai, Scr. Mater. 43 (2000) 21–26.

    Article  Google Scholar 

  10. I. Salvatori, T. Inoue, K. Nagai, ISIJ Int. 42 (2002) 744–50.

    Article  Google Scholar 

  11. J.H. Beynon, C.M. Sellars, ninth edition, ASM Handbook, vol. 14A, Materials Park, OH, 2005, pp. 660–9.

    Google Scholar 

  12. D. Ponge and G. Gottstein: Acta Mater., 1998, 46, pp. 69–80.

    Article  Google Scholar 

  13. A. Dehghan-Manshadi, M.R. Barnett, and P.D. Hodgson: Metall.Mater. Trans. A, 2008, 39A, pp. 1359–70.

    Article  Google Scholar 

  14. A. Belyakov, K. Tsuzaki, H. Miura, and T. Sakai: Acta Mater., 2003, 51, pp. 847–61.

    Article  Google Scholar 

  15. P. Poelt, C. Sommitsch, S. Mitsche, and M. Walter: Mater. Sci.Eng. A, 2006, 420, pp. 306–14.

    Article  Google Scholar 

  16. H. Beladi, P. Cizek, and P.D. Hodgson: Metall. Mater. Trans. A, 2009, 40A, pp. 1175–89.

    Article  Google Scholar 

  17. T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, and J.J. Jonas: Prog. Mater. Sci., 2014, 60, pp. 130–207.

    Article  Google Scholar 

  18. G.R. Stewart, J.J. Jonas, F. Montheillet, ISIJ Int. 44 (2004) 1581–9.

    Article  Google Scholar 

  19. D. Manshadi, P. Hodgson, Metall. Mater. Trans. A 39 (2008) 2830–40.

    Article  Google Scholar 

  20. P. L. Orsettirossi, C. M. Sellars, Acta Mater. 45 (1997) 137–48.

    Article  Google Scholar 

  21. A. Dehghan-Manshadi, M. R. Barnett, P. D. Hodgson, Mat. Sci. Eng. A 485 (2008) 664–72.

    Article  Google Scholar 

  22. W.Roberts, H. Boden, D.Ahlblon, Metal Sci. 13 (1979) 195–205.

    Article  Google Scholar 

  23. G. Gottstein, D. Zabardjadi, H. Mecking, Metal Sci. 13 (1979) 223–7.

    Article  Google Scholar 

  24. G. Gottstein, U.F. Kocks, Acta metall., 31 (1983) 175–88.

    Article  Google Scholar 

  25. G. Gottstein, W.B. von Basel, Mater. Sci. Eng. 92 (1987) 81–90.

    Article  Google Scholar 

  26. G. Gottstein, Metal Sci. 17 (1983) 497–502.

    Article  Google Scholar 

  27. G. Gottstein, S. Deshpande, Mater. Sci. Eng, 94 (1987) 147–54.

    Article  Google Scholar 

  28. W.Roberts, B. Ahlblom, Acta Metall. 26 (1978) 801–13.

    Article  Google Scholar 

  29. G.Gottstein, Acta Metall. 32 (1984) 1117–38.

    Article  Google Scholar 

  30. J.J.Jonas, L.S.Toth, T. Urabe, Mater Sci Forum, 157 (1994) 1713–30.

    Article  Google Scholar 

  31. I.L.Dillamore, H.Katoh, Metall Sci. 8 (1974) 73–83.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Australian Research Council (ARC) for financial support to conduct this research. We are also thankful to Dr. Nicole Stanford, ITRI, Deakin University, Geelong, Victoria, Australia for kind assistance in experimental activities and technical discussion. Authors (AG, GKM, SGC) wish to acknowledge Director, CSIR-NML for his constant encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandip Ghosh Chowdhury Senior Principal Scientist.

Additional information

Manuscript submitted May 1, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guria, A., Mandal, G.K., Hodgson, P. et al. Effect of Twinning on Microstructural Evolution During Dynamic Recrystallisation of Hot Deformed As-Cast Austenitic Stainless Steel. Metall Mater Trans A 46, 4423–4428 (2015). https://doi.org/10.1007/s11661-015-3078-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-3078-y

Keywords

Navigation