Skip to main content
Log in

Thermo-mechanical Processing of TRIP-Aided Steels

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effects of the partial replacement of Si with Al and the addition of P on the microstructure and mechanical properties of experimental TRIP-aided steels subjected to different thermo-mechanical cycles were studied. Based on the available literature and thermodynamics-based calculations, three steels with different compositions were designed to obtain optimum results from a relatively low number of experiments. Different combinations of microstructure were developed through three different kinds of thermo-mechanical-controlled processing (TMCP) routes, and the corresponding tensile properties were evaluated. The results indicated that partial replacement of Si with Al improved the strength-ductility balance along with providing an improved variation in the incremental change in the strain-hardening exponent. However, the impact of the P addition was found to depend more on the final microstructure obtained by the different TMCP cycles. It has also been shown that an increase in the volume fraction of the retained austenite (\( V_{{\gamma_{\text{ret}} }} \)) or its carbon content (\( C_{{\gamma_{\text{ret}} }} \)) resulted in an improved strength-ductility balance, which can be attributed to better exploitation of the TRIP effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. W. Bleck and K. Phiu-On: Mater. Sci. Forum, 2005, vol. 500-501, pp. 97-114.

    Article  Google Scholar 

  2. V. F. Zackay, E. R. Parker, and Earl R. Parker: ASM Trans., 1967, vol. 60, pp. 252-259.

    Google Scholar 

  3. Advance High Strength Steel (AHSS) Application Guidelines, www.worldautosteel.org, Version 4.1, June 2009.

  4. G. B. Olson, R. Chait, M. Azrin, and R. A. Gagne: Metall. Trans. A, 1980, vol. 11, pp. 1069-1071.

    Article  Google Scholar 

  5. K.-i. Sugimoto, D. Fiji, and N. Yoshikawa: Procedia Engineering, 2012, vol. 2, pp. 359-362.

    Article  Google Scholar 

  6. J. Danzeisen, M. Merklein, and K. Roll: Int J Mater Form, 2008, vol. 1, pp. 221-224.

    Article  Google Scholar 

  7. M. De Meyer, D. Vanderschueren, and B.C. De Cooman: ISIJ International, 1999, vol. 39, pp. 813-822.

    Article  Google Scholar 

  8. A. Pichler, P. Stiaszny, R. Potzinger, R. Tikal, and E. Werner: Proc. 40th MWSP Conf., ISS, Warrendale, 1998, pp. 259–74.

  9. B. C. De Cooman: Current Opinion in Solid State and Material Science, 2004, vol. 8, pp. 285-303.

    Article  Google Scholar 

  10. H. C. Chen, H. Era and M. Shimizu: Metall. Trans. A, 1989, vol. 20, pp. 437-45.

    Article  Google Scholar 

  11. H. Dong and X. Sun: in Ultra-Fine Grained Steels, 3rd ed., Y. Weng, ed., Springer, New York, 2009.

  12. P.D. Hodgson and H. Beladi: in Phase Transformation in Steels, vol. 1, E. Pereloma and D.V. Edmonds, eds., Woodhead Publishing, Cambridge, 2012.

  13. T. Siwecki and G. Engberg: Proc. Thermo-mech. Process. Theory Model. Pract., ASM International, Stockholm, 1996, pp. 121–43.

  14. K. Hulka, W. Bleck, and K. Papamantellos: Proc. 41st Mech. Work. Steel Process. Conf., Iron and Steel Society, Baltimore, 1999, pp. 67–68.

  15. J. Wang and S. van der Zwaag: Metallurgical and Materials Transactions A, 2001, vol. 32, pp. 1527-1529.

    Article  Google Scholar 

  16. H. Mohrbacher, X. Sun, Q. Yong, and H. Dong: in Advanced Steels, Y. Weng, H. Dong, and Y. Gan, eds., Metallurgy Industry Press, Springer, 2011, pp. 289–301.

  17. S. Hashimoto, S. Ikeda, K. Sugimoto, and S. Miyake: Proce. Int. Conf. Adv. High Strength Sheet Steels Automot. Appl., AIST, Winter Park, Colorado, 2004, pp. 195–204.

  18. A. K. Srivastava, G. Jha, N. Gope, and S. B. Singh: Materials Characterization, 2006, vol. 57, pp. 127-135.

    Article  Google Scholar 

  19. P. Jacques, X. Cornet, Ph. Harlet, J. Ladriere, and F. Delannay: Metallurgical and Materials Transactions A, 1998, vol. 29, pp. 2383-2393.

    Article  Google Scholar 

  20. T. De Cock, J. P. Ferrer, C. Capdevila, F. G. Caballero, V. López, and C. García de Andrés: Scripta Materiallia, 2006, vol. 55, pp. 441-443.

    Article  Google Scholar 

  21. D. W. Suh, S. J. Park, T. H. Lee, C. S. Oh, and S. J. Kim: Metallurgical and Materials Transactions A, 2010, vol. 41A, pp. 397-408.

    Article  Google Scholar 

  22. B. Mintz, J. C. Wright: Journal of the Iron and Steel Institute, 1970, vol. 208, pp. 401-405.

    Google Scholar 

  23. T. Bhattacharyya, S. B. Singh, S. Das, A. Haldar, and D. Bhattacharjee: Material Science and Engineering A, 2011, vol. 528, pp. 2394-2400.

    Article  Google Scholar 

  24. G. R. Speich, V. A. Demarest, and R. L. Miller: Metall. Trans. A, 1981, vol. 12, pp. 1419-1428.

    Article  Google Scholar 

  25. H.K.D.H. Bhadeshia and S.R. Honeycombe: Steels Microstructure and Properties, 3rd ed., Elsevier Ltd, Oxford, 2006.

  26. H.K.D.H. Bhadeshia: Bainite in Steel, 2nd ed., Maney Materials Science, 2001.

  27. S.B. Singh: in Phase Transformation in Steels, vol. 1, E. Pereloma and D.V. Edmonds, eds., Woodhead Publishing, Cambridge, 2012.

  28. D. P. Koistinen and R. E. Marburger: Acta Metallurgica, 1959, vol. 7, 59-60.

    Article  Google Scholar 

  29. K. Sugimoto, N. Usui, M. Kobayashi, and S. Hashimoto: ISIJ International, 1992, vol. 32, pp. 1311-1318.

    Article  Google Scholar 

  30. P. D. Hodgson, D. C. Collinson, and B. Perrett: Proc. Int. Symp. Phys. Simul., A.G. Suzuki, T. Sakai, and F. Matsuda, eds., NRIM, 1997, p. 219.

  31. H. Beladi and P. D. Hodgson: Scripta Materialia, 2007, vol. 56, pp.1059–1062.

    Article  Google Scholar 

  32. J. Calvo, L. Collins, and S. Yue: ISIJ International, 2010, vol. 50, pp. 1193-1199.

    Article  Google Scholar 

  33. S. Vervynckt, K. Verbeken, P. Thibaux, and Y. Houbaert: Steel Research Int., 2011, vol. 82, pp. 369-378.

    Article  Google Scholar 

  34. I. B. Timokhina, H. Beladi, X. Y. Xiong, and P. D. Hodgson: Materials Science Forum, 2012, vol. 706-709, pp. 2332-2337.

    Article  Google Scholar 

  35. H. Beladi and G. S. Rohrer: Acta Materialia, 2013, vol. 61, pp. 1404-1412.

    Article  Google Scholar 

  36. G. Dieter: Mechanical Metallurgy, 3rd ed., Tata McGraw-Hill Education, 2013.

  37. A. K. De, J. G. Speer, and D. K. Matlock: Advanced Materials and Processes, ASM International, 2003, vol. 161, pp. 27-31.

    Google Scholar 

  38. M. J. Dickson: J. Appl. Cryst., 1969, vol. 2, pp. 176-80.

    Article  Google Scholar 

  39. B.D Cuilty: Elements of X-ray diffraction, 2nd ed., Addison-Wesley Publishing Company Inc., Reading, 1978.

  40. D. J. Dyson and B. Holmes: Journal of the Iron and Steel Institute, 1970, vol. 208, pp. 469-474.

    Google Scholar 

  41. G. R. Lehnhoff, K. O. Findley, and B. C. De Cooman: Scripta Materialia, 2014, vol. 92, pp. 19-22.

    Article  Google Scholar 

  42. S. J. Kim, G. C. Lee, I. Choi, and S. Lee: Metallurgical and Materials Transactions A, 2001, vol. 32, pp. 505-514.

    Article  Google Scholar 

  43. M.F. Gallagher, J.G. Speer, D.K. Matlock, and M.N. Fonstein: Proc. 44th Mech. Working Steel Process. Conf., Iron and Steel Society, Orlando, 2002, pp. 153–172.

  44. W. Steven and A. G. Haynes: Journal of the Iron and Steel Institute, 1956, vol. 183, pp. 349-359.

    Google Scholar 

  45. K. W. Andrews: Journal of the Iron and Steel Institute, 1965, vol. 203, pp. 721-727.

    Google Scholar 

  46. Thermodynamic database TCFE6-TCS Steel/Fe-Alloys Database, Version 6.2, Thermo-Calc Software, www.thermocalc.com.

  47. T. Heller and A. Nuss: Proc. Int. Symp. Transform. Deform. Mech. Adv. High Strength Steels, M. Militzer, W.J. Poole, and E. Essadiqui, eds., CIM, Montreal, 2003, pp. 7–20.

  48. D. W. Suh, S. J. Park, C. S. Oh, and S. J. Kim: Scripta Materialia, 2007, vol. 57, pp. 1097-1100.

    Article  Google Scholar 

  49. M. Mukherjee: Ph.D. Thesis, Indian Institute of Technology, Kharagpur, India, 2006.

  50. H. K. D. H. Bhadeshia: Proc. R. Soc., 2010, vol. 466, pp. 3-18.

    Article  Google Scholar 

  51. E. Jimenez-Melero, N. H. van Dijk, L. Zhao, J. Sietsma, S. E. Offerman, J. P. Wright, and S. van der Zwaag: Acta Materialia, 2009, vol. 57, pp. 533-543.

    Article  Google Scholar 

  52. M. Soliman and H. Palkowaski: Metallurgical and Materials Transactions A, 2008, vol. 39A, pp. 2513-2527.

    Article  Google Scholar 

  53. S. Hashimoto, S. Ikeda, K. Sugimoto, and S. Miyake: ISIJ Int., 2004, vol. 44, pp. 1590-1598.

    Article  Google Scholar 

  54. I. Tsukatani, S. Hashimoto, and T. Inoue: ISIJ Int., 1991, vol. 31, pp. 992-1000.

    Article  Google Scholar 

  55. L. Zaho, N. H. van Dijik, E. Brück, J. Sietsma, and S. van der Zwaag: Materials Science and Engineering A, 2001, vol. 313, pp. 145-152.

    Article  Google Scholar 

  56. G. Krauss: Processing, Structure, and Performance, ASM International, Materials Park 2005.

    Google Scholar 

  57. P. Lejček: Grain Boundary Segregation in Metals, 1st ed., Springer, Heidelberg, 2010.

  58. P. J. Jacques: Current Opinion in Solid State and Materials Science, 2004, vol. 8, pp. 259-265.

    Article  Google Scholar 

  59. J. B. Jeon and Y. W. Chang: Met. Mater. Int., 2010, vol. 16, pp. 533-541.

    Article  Google Scholar 

  60. F.C. Campbell: Elements of Metallurgy and Engineering Alloys, 1st ed., ASM International, Materials Park, 2008.

  61. P. J. Evans, L. K. Crawford, and A. Jones: Ironmaking and Steelmaking, 1997, vol. 24, pp. 361.

    Google Scholar 

  62. R.E. Smallman and A.H.W. Ngan: Physical Metallurgy and Advanced Materials, 7th ed., Butterworth-Heinemann, Burlington 2007.

  63. F. B. Pickering: Physical Metallurgy and the Design of Steels, First Edition, Applied Science Publishers Ltd., London, 1978.

    Google Scholar 

Download references

Acknowledgments

The authors (Ravi Ranjan and Shiv Brat Singh) gratefully acknowledge the support of Ministry of Steel and Department of Science and Technology, Government of India. The work at Deakin University was supported through the Grants provided by the Australian Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravi Ranjan.

Additional information

Manuscript submitted October 7, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranjan, R., Beladi, H., Singh, S.B. et al. Thermo-mechanical Processing of TRIP-Aided Steels. Metall Mater Trans A 46, 3232–3247 (2015). https://doi.org/10.1007/s11661-015-2885-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-2885-5

Keywords

Navigation