Skip to main content
Log in

Mechanical Behavior of Nano-crystalline Metallic Thin Films and Multilayers Under Microcompression

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Microcompression tests were performed to determine the mechanical behavior of nano-crystalline Cu/Fe and Fe/Cu multilayers, as well as monolithic Cu and Fe thin films. The results show that the micropillars of pure Cu thin film bulge out under large compressive strains without failure, while those of pure Fe thin film crack near the top at low compressive strains followed by shear failure. For Cu/Fe and Fe/Cu multilayers, the Cu layers accommodate the majority of plastic deformation, and the geometry constraints imposed by Fe layers exaggerates the bulging in the Cu layers. However, the existence of ductile Cu layers does not improve the overall ductility of Cu/Fe and Fe/Cu multilayers. Cracking in the Fe layers directly lead to the failure of the multilayer micropillars, although the Cu layers have very good ductility. The results imply that suppressing the cracking of brittle layers is more important than simply adding ductile layers for improving the overall ductility of metallic multilayers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. E. Fortunato, P. Barquinha, and R. Martins: Adv. Mater., 2012, vol. 24, pp. 2945-86.

    Article  Google Scholar 

  2. A.G. Aberle: Thin Solid Films 2009, vol. 517, pp. 4706-10.

    Article  Google Scholar 

  3. M.A. Green: J. Mater. Sci. Mater. Electron., 2007, vol. 18, pp. 15-9.

    Google Scholar 

  4. B. Bhushan: in MEMS/NEMS and BioMEMS/BioNEMS: Materials, Devices, and Biomimetics Nanotribology and Nanomechanics II, B. Bhushan, ed., Springer, Berlin, 2011, pp. 833–945.

  5. W.D. Nix: Metall. Trans. A, 1989, vol. 20, pp. 2217-45.

    Article  Google Scholar 

  6. S.M. Spearing: Acta Mater., 2000, vol. 48, pp. 179-96.

    Article  Google Scholar 

  7. W.N. Sharpe Jr: The MEMS handbook, 2002, vol. 3, pp. 1-33, CRC, Boca Raton.

    Google Scholar 

  8. J.Y. Zhang, X. Zhang, R.H. Wang, S.Y. Lei, P. Zhang, J.J. Niu, G. Liu, G.J. Zhang, and J. Sun: Acta Mater., 2011, vol. 59, pp. 7368-79.

  9. J.Y. Zhang, S. Lei, Y. Liu, J.J. Niu, Y. Chen, G. Liu, X. Zhang, and J. Sun: Acta Mater., 2012, vol. 60, pp. 1610-22.

  10. D. Gianola, and C. Eberl: JOM, 2009, vol. 61, pp. 24-35.

    Article  Google Scholar 

  11. K.J. Hemker, and W.N. Sharpe: Annu. Rev. Mater. Res., 2007, vol. 37, pp. 93-126.

    Article  Google Scholar 

  12. O. Kraft, P.A. Gruber, R. Mönig, and D. Weygand: Annu. Rev. Mater. Res., 2010, vol. 40, pp. 293-317.

    Article  Google Scholar 

  13. M.D. Uchic, P.A. Shade, and D.M. Dimiduk: Annu. Rev. Mater. Res., 2009, vol. 39, pp. 361-86.

    Article  Google Scholar 

  14. M. Uchic, D. Dimiduk, J. Florando, and W. Nix: Science, 2004, vol. 305, pp. 986-9.

    Article  Google Scholar 

  15. J.R. Greer, W.C. Oliver, and W.D. Nix: Acta Mater., 2005, vol. 53, pp. 1821-30.

    Article  Google Scholar 

  16. M.C. Liu, J.C. Huang, H.S. Chou, Y.H. Lai, C.J. Lee, and T.G. Nieh: Scr. Mater., 2009, vol. 61, pp. 840-3.

    Article  Google Scholar 

  17. M.C. Liu, X.H. Du, I.C. Lin, H.J. Pei, and J.C. Huang: Intermetallics, 2012, vol. 30, pp. 30-4.

    Article  Google Scholar 

  18. J.Y. Zhang, S. Lei, J. Niu, Y. Liu, G. Liu, X. Zhang, and J. Sun: Acta Mater., 2012, vol. 60, pp. 4054-64.

  19. S.-W. Lee, S.M. Han, and W.D. Nix: Acta Mater., 2009, vol. 57, pp. 4404-15.

    Article  Google Scholar 

  20. J. Wang, C. Yang, and P.D. Hodgson: Scr. Mater., 2013, vol. 69, pp. 626-9.

    Article  Google Scholar 

  21. I.N. Sneddon: Int. J. Eng Sci 1965, vol. 3, pp. 47-57.

    Article  Google Scholar 

  22. M.A. Hopcroft, W.D. Nix, and T.W. Kenny: J. Microelectromech. Syst., 2010, vol. 19, pp. 229-38.

    Article  Google Scholar 

  23. A.R. Yavari, P.J. Desré, and T. Benameur: Phys. Rev. Lett., 1992, vol. 68, pp. 2235-8.

    Article  Google Scholar 

  24. E. Gaffet, M. Harmelin, and F. Faudot: J. Alloys Compd., 1993, vol. 194, pp. 23-30.

    Article  Google Scholar 

  25. G.T. GrayIii, T.C. Lowe, C.M. Cady, R.Z. Valiev, and I.V. Aleksandrov: Nanostruct. Mater., 1997, vol. 9, pp. 477–80.

    Article  Google Scholar 

  26. M.A. Meyers, A. Mishra, and D.J. Benson: Prog. Mater Sci., 2006, vol. 51, pp. 427-556.

    Article  Google Scholar 

  27. R. SuryanarayananIyer, C.A. Frey, S.M.L. Sastry, B.E. Waller, and W.E. Buhro: Mater. Sci. Eng. A, 1999, vol. 264, pp. 210–14.

    Article  Google Scholar 

  28. D. Jia, K.T. Ramesh, and E. Ma: Acta Mater., 2003, vol. 51, pp. 3495-509.

    Article  Google Scholar 

  29. K.Y. Xie, Y. Wang, S. Ni, X. Liao, J.M. Cairney, and S.P. Ringer: Scr. Mater., 2011, vol. 65, pp. 1037-40.

    Article  Google Scholar 

  30. F.F. Csikor, C. Motz, D. Weygand, M. Zaiser, and S. Zapperi: Science, 2007, vol. 318, pp. 251-4.

    Article  Google Scholar 

  31. Z.W. Shan, R.K. Mishra, S.A. Syed Asif, O.L. Warren, and A.M. Minor: Nat. Mater., 2008, vol. 7, pp. 115-9.

    Article  Google Scholar 

  32. M.C. Liu, C.J. Lee, Y.H. Lai, and J.C. Huang: Thin Solid Films 2010, vol. 518, pp. 7295-9.

    Article  Google Scholar 

  33. D.R.P. Singh, N. Chawla, G. Tang, and Y.L. Shen: Acta Mater., 2010, vol. 58, pp. 6628-36.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support from the Australian Research Council through the Laureate Fellowship for P.D. Hodgson.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiangting Wang.

Additional information

Manuscript submitted August 17, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Yang, C. & Hodgson, P.D. Mechanical Behavior of Nano-crystalline Metallic Thin Films and Multilayers Under Microcompression. Metall Mater Trans A 46, 1405–1412 (2015). https://doi.org/10.1007/s11661-014-2715-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2715-1

Keywords

Navigation