Skip to main content
Log in

Three-Dimensional Phase-Field Simulation and Experimental Validation of β-Mg17Al12 Phase Precipitation in Mg-Al-Based Alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A three-dimensional (3D) phase-field model has been developed to simulate the formation of lath-shaped β-Mg17Al12 phase during hcp→bcc transformation in Mg-Al-based alloys. The model considers the synergistic effects of the elastic strain energy associated with the lattice rearrangements that accompany the phase transformation, and the interface anisotropy (both in interfacial energy and interface mobility coefficient). By using the proposed model, the essential features of 3D morphology of the β phase precipitate have been successfully predicted and experimentally validated using high-resolution transmission electron microscopy and atomic force microscopy. Furthermore, the spatial distribution of anisotropic elastic interaction field around a pre-existing β precipitate has been quantitatively determined using 3D phase-field simulation, and the effects of the anisotropic elastic interaction energy on subsequent nucleation of β phase near a pre-existing precipitate have been revealed. The results suggest that the anisotropic elastic interaction energy can promote the formation of new nucleus near the lozenge ends of the pre-existing precipitate, as explicitly substantiated by the experimental observations. The influence of different combinations of interface anisotropy and elastic strain energy on the thickness of β phase precipitate has been elucidated. The correlation between microstructural design during precipitation and the alloy-strengthening mechanisms has also been discussed in terms of dislocation motion. Based on these results, possible strategies for strengthening Mg-Al-based alloys are proposed for magnesium alloy development and microstructural design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. B.L. Mordike and T. Ebert: Mater. Sci. Eng. A, 2001, vol. 302, pp. 37-45.

    Article  Google Scholar 

  2. A.A. Luo: Journal of Magnesium and Alloys, 2013, vol. 1, pp. 2-22.

    Article  Google Scholar 

  3. A.A. Luo, C. Zhang, A.K. Sachdev: Scripta Materialia, 2012, vol. 66, pp. 491-494.

    Article  Google Scholar 

  4. S. Celotto: Acta Mater., 2000, vol. 48, pp. 1775-87.

    Article  Google Scholar 

  5. K.N. Braszczynska-Malik: Magnesium Alloys-Design, Processing and Properties, 1st ed., InTech Press, Croatia, 2011, pp. 95-112.

    Google Scholar 

  6. C.R. Hutchinson, J.F. Nie, and S. Gorsse: Metall. Mater. Trans. A, 2005, vol. 36, pp. 2093-2105.

    Article  Google Scholar 

  7. J.F. Nie: Metall. Mater. Trans. A, 2012, vol. 43, pp. 3891-3939.

    Article  Google Scholar 

  8. J.B. Clark: Acta Metall., 1968, vol. 16, pp. 141-52.

    Article  Google Scholar 

  9. A.F. Crawley and B. Lagowski: Metall. Trans., 1974, vol. 5, pp. 949-51.

    Article  Google Scholar 

  10. J. Gjömmes and T. Östrmoe: Z. Metallkd., 1970, vol. 31, pp. 604-06.

    Google Scholar 

  11. A.F. Crawley and K.S. Milliken: Acta Metall., 1974, vol. 22, pp. 557-62.

    Article  Google Scholar 

  12. D.A. Porter and J.W. Edington: Proc. R. Soc. A, 1977, vol. 358, pp. 335-50.

    Article  Google Scholar 

  13. D. Duly and Y. Brechet: Acta Metall. Mater., 1994, vol. 42, pp. 3035-43.

    Article  Google Scholar 

  14. D. Duly, M.C. Cheynet, and Y. Brechet: Acta Metall. Mater., 1994, vol. 42, pp. 3843-54.

    Article  Google Scholar 

  15. D. Duly, J.P. Simon, and Y. Brechet: Acta Metall. Mater., 1995, vol. 43, pp. 101-06.

    Google Scholar 

  16. D. Duly, W.Z. Zhang, and M. Audier: Phil. Mag. A, 1995, vol. 71, pp. 187-204.

    Article  Google Scholar 

  17. J.F. Nie, X.L. Xiao, C.P. Luo, and B.C. Muddle: Micron., 2001, vol. 32, pp. 857-63.

    Article  Google Scholar 

  18. J.F. Nie: Acta Mater., 2004, vol. 52, pp. 795-807.

    Article  Google Scholar 

  19. J.F. Nie: Metall. Mater. Trans. A, 2006, vol. 37, pp. 841-49.

    Article  Google Scholar 

  20. D.Y. Li and L.Q. Chen: Acta Metall. Mater., 1998, vol. 46, pp. 2573-85.

    Article  Google Scholar 

  21. D.Y. Li and L.Q. Chen: Acta Metall. Mater., 1998, vol. 46, pp. 639-49.

    Article  Google Scholar 

  22. V. Vaithyanathan and L.Q. Chen: Scripta Mater., 2000, vol. 42, pp. 967-73.

    Article  Google Scholar 

  23. V. Vaithyanathan, C. Wolverton, and L.Q. Chen: Phys. Rev. Lett., 2002, vol. 88, pp. 125503-4.

    Article  Google Scholar 

  24. J.Z. Zhu, T. Wang, A.J. Ardell, S.H. Zhou, Z.K. Liu, and L.Q. Chen: Acta Mater., 2004, vol. 52, pp. 2837-45.

    Article  Google Scholar 

  25. Y.H. Wen, L.Q. Chen, P.M. Hazzledine, and Y. Wang: Acta Mater., 2001, vol. 49, pp. 2341-53.

    Article  Google Scholar 

  26. R. Shi, N. Ma, and Y. Wang: Acta Mater., 2012, vol. 60, pp. 4172-84.

    Article  Google Scholar 

  27. R. Shi and Y. Wang: Acta Mater., 2013, vol. 61, pp. 6006-24.

    Article  Google Scholar 

  28. W. Zhang, Y.M. Jin, and A.G. Khachaturyan: Acta Mater., 2007, vol. 55, pp. 565-74.

    Article  Google Scholar 

  29. H.K. Yeddu, A. Malik, J. Agren, G. Amberg, and A. Borgenstam: Acta Mater., 2012, vol. 60, pp. 1538-47.

    Article  Google Scholar 

  30. A. Malik, H.K. Yeddu, G. Amberg, A. Borgenstam, and J. Agren: Mater. Sci. Eng. A, 2012, vol. 556, pp. 221-32.

    Article  Google Scholar 

  31. H.K. Yeddu, A. Borgenstam, and J. Agren: Acta Mater., 2013, vol. 61, pp. 2595-2606.

    Article  Google Scholar 

  32. A. Malik, G. Amberg, A. Borgenstam, and J. Agren: Acta Mater., 2013, vol. 61, pp. 7868-80.

    Article  Google Scholar 

  33. M. Mamivand, M.A. Zaeem, H.E. Kadiri, and L.Q. Chen: Acta Mater., 2013, vol. 61, pp. 5223-35.

    Article  Google Scholar 

  34. M. Li, R.J. Zhang, and J. Allison: in Magnesium Technology 2010, Sean R. Agnew, Neale R. Neelameggham, Eric A. Nyberg, and Wim H. Sillekens, eds., TMS, Seattle, 2010, pp. 623–27.

  35. J.S. Wang, M. Li, B. Ghaffari, L.Q. Chen, J.S. Miao, and J. Allison: Mg2012: 9th Int. Conf. Magnes. Alloys Appl., W.J. Poole and K.U. Kainer, eds., Vancouver, Canada, 2012, pp. 163–70.

  36. Y. Gao, H. Liu, R. Shi, N. Zhou, Z. Xu, Y.M. Zhu, J.F. Nie, and Y. Wang: Acta Mater., 2012, vol. 60, pp. 4819-32.

    Article  Google Scholar 

  37. H. Liu, Y. Gao, J.Z. Liu, Y.M. Zhu, Y. Wang, and J.F. Nie: Acta Mater., 2013, vol. 61, pp. 453-66.

    Article  Google Scholar 

  38. G.M. Han, Z.Q. Han, A.A. Luo, S.K. Sachdev, and B.C. Liu: Acta Metall. Sin., 2013, vol. 49, pp. 277-83.

    Google Scholar 

  39. G.M. Han, Z.Q. Han, A.A. Luo, S.K. Sachdev, and B.C. Liu: Scripta Mater., 2013, vol. 68, pp. 691-94.

    Article  Google Scholar 

  40. S.G. Kim, W.T. Kim, and T. Suzuki: Phys. Rev. E: Stat. Phys., 1999, vol. 60, pp. 7186-97.

    Article  Google Scholar 

  41. P. Liang, H.L. Su, P. Donnadieu, M. Harmelin, and A. Quivy: Z. Metallkd., 1998, vol. 89, pp. 536-40.

    Google Scholar 

  42. Y. Zhong, M. Yang, and Z.K. Liu: CALPHAD, 2005, vol. 29, pp. 303-11.

    Article  Google Scholar 

  43. A.G. Khachaturyan: Theory of structural transformations in solids, John Wiley & Sons, Inc., New York, 1983, pp. 198-212.

    Google Scholar 

  44. B. Kouchmeshky and N. Zabaras: Comput. Mater. Sci., 2009, vol. 45, pp. 1043-51.

    Article  Google Scholar 

  45. G.B. McFadden, A.A. Wheeler, R.J. Braun, S.R. Coriell, and R.F. Sekerka: Phys. Rev. E: Stat. Phys., 1993, vol. 60, pp 2016-24.

    Article  Google Scholar 

  46. A. Kazaryan, Y. Wang, S.A. Dregia, and B.R. Patton: Phys. Rev. B: Condens. Matter., 2000, vol. 61, pp. 14275-78.

    Article  Google Scholar 

  47. A. Kazaryan, Y. Wang, S.A. Dregia, and B.R. Patton: Phys. Rev. B: Condens. Matter., 2001, vol 63, pp. 184102-11.

    Article  Google Scholar 

  48. S.Y. Hu, J. Murray, H. Weiland, Z.K. Liu, and L.Q. Chen: CALPHAD, 2007, vol. 31, pp. 303-12.

    Article  Google Scholar 

  49. S.Y. Hu: Ph.D. Thesis, Pennsylvania State University, 2004.

  50. Y. Z. Ji, A. Issa, T. W. Heo, J.E. Saal, C. Wolverton, and L.Q. Chen: Acta Mater., 2014, vol. 76, 259-71.

    Article  Google Scholar 

  51. R.E. Newnham: Properties of Materials: Anisotropy, Symmetry, Structure, Oxford University Press, Oxford, 2005, pp.110-13.

    Google Scholar 

  52. S. Celotto: Ph.D. Thesis, University of Queensland, Australia, 1997.

  53. L. Zhang, L.Q. Chen, and Q. Du: Phys. Rev. Lett., 2007, vol. 98, pp. 265703.

    Article  Google Scholar 

  54. L. Zhang, L.Q. Chen, and Q. Du: Acta Mater., 2008, vol. 56, 3568-76.

    Article  Google Scholar 

  55. C. Shen, J. P Simmons, and Y. Wang: Acta Mater., 2006, vol. 54, pp. 5617-30.

    Article  Google Scholar 

  56. C. Shen, J.P. Simmons, and Y. Wang: Acta Mater., 2007, vol. 55, pp. 1457-66.

    Article  Google Scholar 

  57. M.X. Zhang and P.M. Kelly: Scripta Mater., 2003, vol. 48, pp. 647-52.

    Article  Google Scholar 

  58. J.F. Nie: Scripta Mater., 2003, vol 48, pp. 1009-15.

    Article  Google Scholar 

  59. A. Biswas, D.J. Siegel, C. Wolverton, and D.N. Seidman: Acta Mater., 2011, vol. 59, pp. 6187-204.

    Article  Google Scholar 

  60. B.A. Chen, G. Liu, R.H. Wang, J.Y. Zhang, L. Jiang, J.J. Song, and J. Sun: Acta Mater., 2013, vol. 61, pp. 1676-90.

    Article  Google Scholar 

Download references

Acknowledgments

This study is funded by the National Natural Science Foundation of China (Grant No. 51175291), Tsinghua University Initiative Scientific Research Program (Grant No. 2011Z02160), and the State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology. The support of General Motors Global Research and Development Center (GM R&D) and the State Key Laboratory of Automotive Safety and Energy, Tsinghua University under the contract 2013XC-A-01 are gratefully acknowledged. The authors would also like to gratefully appreciate Dr. Anil Sachdev of GM R&D for his encouragements and technical discussions, and Prof. Yunzhi Wang of The Ohio State University for his critical review and constructive comments on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiqiang Han.

Additional information

Manuscript submitted July 16, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, G., Han, Z., Luo, A.A. et al. Three-Dimensional Phase-Field Simulation and Experimental Validation of β-Mg17Al12 Phase Precipitation in Mg-Al-Based Alloys. Metall Mater Trans A 46, 948–962 (2015). https://doi.org/10.1007/s11661-014-2674-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2674-6

Keywords

Navigation