Skip to main content
Log in

The Effect of Simulated Thermomechanical Processing on the Transformation Behavior and Microstructure of a Low-Carbon Mo-Nb Linepipe Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The present work investigates the transformation behavior of a low-carbon Mo-Nb linepipe steel and the corresponding transformation product microstructures using deformation dilatometry. The continuous cooling transformation (CCT) diagrams have been constructed for both the fully recrystallized austenite and that deformed in uniaxial compression at 1148 K (875 °C) to a strain of 0.5 for cooling rates ranging from 0.1 to about 100 K/s. The obtained microstructures have been studied in detail using electron backscattered diffraction complemented by transmission electron microscopy. Heavy deformation of the parent austenite has caused a significant expansion of the polygonal ferrite transformation field in the CCT diagram, as well as a shift in the non-equilibrium ferrite transformation fields toward higher cooling rates. Furthermore, the austenite deformation has resulted in a pronounced refinement in both the effective grain (sheaf/packet) size and substructure unit size of the non-equilibrium ferrite microstructures. The optimum microstructure expected to display an excellent balance between strength and toughness is a mix of quasi-polygonal ferrite and granular bainite (often termed “acicular ferrite”) produced from the heavily deformed austenite within a processing window covering the cooling rates from about 10 to about 100 K/s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. T. Araki: Proc. Int. Conf. HSLA Steels’85, J.M. Gray et al., eds., ASM International, Metals Park, OH, 1986, pp. 259–71.

  2. B.L. Bramfitt and J.G. Speer: Metall. Trans. A, 1990, vol. 21A, pp. 817–29.

    Article  Google Scholar 

  3. T. Araki, I. Kozasu, H. Takechi, K. Shibata, M. Enomoto, and H. Tamehiro, eds.: Atlas for Bainitic MicrostructuresVol. 1, Continuous-Cooled Zw Microstructures of Low-Carbon Steels, Iron and Steel Institute of Japan, Tokyo, 1992, pp. 4–5.

  4. S.C. Wang and J.R. Yang: Mater. Sci. Eng. A, 1992, vol. 154, pp. 43-49.

    Article  Google Scholar 

  5. K. Fujiwara, S. Okaguchi, and H. Ohtani: Iron Steel Inst. Jpn. Int., 1995, vol. 35, pp. 1006–12.

    Article  Google Scholar 

  6. G. Krauss and S.W. Thompson: Iron Steel Inst. Jpn. Int., 1995, vol. 35, pp. 937–45.

    Article  Google Scholar 

  7. G.I. Garcia: Proc. Int. Conf. Microalloying’95, The Iron and Steel Society, Warrendale, PA, 1995, pp. 365–75.

  8. S. Yamamoto, H. Yokoyama, K. Yamada, and M. Niikura: Iron Steel Inst. Jpn. Int., 1995, vol. 35, pp. 1020–26.

    Article  Google Scholar 

  9. S.W. Thompson, D.J. Colvin, and G. Krauss: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 1557–71.

    Article  Google Scholar 

  10. P.A. Manohar, T. Chandra, and C.R. Killmore: Iron Steel Inst. Jpn. Int., 1996, vol. 36, pp. 1486–93.

    Article  Google Scholar 

  11. C.S. Chiou, J.R. Yang, and C.Y. Huang: Mater. Chem. Phys., 2001, vol. 69, pp. 113–24.

    Article  Google Scholar 

  12. P. Cizek, B.P. Wynne, C.H.J. Davies, B.C. Muddle, and P.D. Hodgson: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 1331–49.

    Article  Google Scholar 

  13. Y.M. Kim, S.K. Kim, Y.J. Lim, and N.J. Kim: Iron Steel Inst. Jpn. Int., 2002, vol. 42, pp. 1571–77.

    Article  Google Scholar 

  14. M. Díaz-Fuentes, A. Iza-Mendia, and I. Gutiérrez: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 2505–16.

    Article  Google Scholar 

  15. M.C. Zhao, K. Yang, F.R. Xiao, and Y.Y. Shan: Mater. Sci. Eng. A, 2003, vol. 355, pp. 126–36.

    Article  Google Scholar 

  16. F. Xiao, B. Liao, D. Ren, Y. Shan, and K. Yang: Mater. Charact., 2005, vol. 54, pp. 305–14.

    Article  Google Scholar 

  17. I.A. Yakubtsov, P. Poruks, and J.D. Boyd: Mater. Sci. Eng. A, 2008, vol. 480, pp. 109–16.

    Article  Google Scholar 

  18. S.Y. Shin, B. Hwang, S. Lee, N.J. Kim, and S.S. Ahn: Mater. Sci. Eng. A, 2007, vol. 458, pp. 281–89.

    Article  Google Scholar 

  19. Y.M. Kim, H. Lee, and N.J. Kim: Mater. Sci. Eng. A, 2008, vol. 478, pp. 61–70.

    Google Scholar 

  20. S.Y. Han, S.Y. Shin, C.-H. Seo, H. Lee, J.-H. Bae, K. Kim, S. Lee, and N.J. Kim: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 1851–62.

    Article  Google Scholar 

  21. B. Hwang, C.G. Lee, and T.-H. Lee: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 85–96.

    Article  Google Scholar 

  22. S.Y. Han, S.Y. Shin, S. Lee, N.J. Kim, J.-H. Bae, and K. Kim: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 329–40.

    Article  Google Scholar 

  23. R.Y. Zhang and J.D. Boyd: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 1448-59.

    Article  Google Scholar 

  24. M. Olasolo, P. Uranga, J.M. Rodriguez-Ibabe, and B. López: Mater. Sci. Eng. A, 2011, vol. 528, pp. 2559–69.

    Article  Google Scholar 

  25. H.K. Sung, S.Y. Shin, B. Hwang, C.G. Lee, N.J. Kim, and S. Lee: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 1827–35.

    Article  Google Scholar 

  26. H.K. Sung, S.Y. Shin, B. Hwang, C.G. Lee, and S. Lee: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 294–302.

    Article  Google Scholar 

  27. H.F. Lan, L.X. Du, and X.H. Liu: Steel Res. Int., 2013, vol. 84, pp. 352–61.

    Article  Google Scholar 

  28. N. Isasti, D. Jorge-Badiola, M.L. Taheri, and P. Uranga: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 3552–63.

    Article  Google Scholar 

  29. I. Tamura, H. Sekine, T. Tanaka, and C. Ouchi: Thermomechanical Processing of High-Strength Low-Alloy Steels, Butterworth and Company, London, 1988.

    Google Scholar 

  30. Y. Ohmori and T. Maki, Mater. Trans. JIM, 1991, vol. 32, pp. 631–41.

    Article  Google Scholar 

  31. A.J. Schwartz, M. Kumar, B.L. Adams, and D.P. Field, eds.: Electron Backscatter Diffraction in Materials Science, 2nd edition, Springer, New York, 2009.

  32. F.J. Humphreys, P.S. Bate, and P.J. Hurley: J. Microsc., 2001, vol. 201, pp. 50–58.

    Article  Google Scholar 

  33. J.K. Mackenzie: Biometrika, 1958, vol. 45, pp. 229–40.

    Article  Google Scholar 

  34. A.-F. Gourgues, H.M. Flower, and T.C. Lindley: Mater. Sci. Technol., 2000, vol. 16, pp. 26–40.

    Article  Google Scholar 

  35. J.S. Kirkaldy, B.A. Thomson, and E.A. Baganis: in Hardenability Concepts with Applications to Steel, D.V. Doane and J.S. Kirkaldy, eds., TMS-AIME, Warrendale, PA, 1978, pp. 82–125.

  36. M. Enomoto, C.L. White, and H.I. Aaronson: Metall. Trans. A, 1988, vol. 19A, pp. 1807–18.

    Article  Google Scholar 

  37. G.R. Speich, L.J. Cuddy, C.R. Gordon, and A.J. DeArdo: in Phase Transformations in Ferrous Alloys, A.R. Marder and J.I. Goldstein, eds., TMS-AIME, Warrendale, PA, 1983, pp. 341–89.

  38. Q. Zhu, C.M. Sellars, and H.K.D.H. Bhadeshia: Mater. Sci. Technol., 2007, vol. 23, pp. 757–66.

    Article  Google Scholar 

  39. C.W. Choi, H.J. Koh, and S. Lee: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 2669–74.

    Article  Google Scholar 

  40. E.A. Wilson: Met. Sci., 1984, vol. 18, pp. 471–84.

    Article  Google Scholar 

  41. E.A. Wilson: Iron Steel Inst. Jpn. Int., 1994, vol. 34, pp. 615–30.

    Article  Google Scholar 

  42. P. Cizek, F. Bai, W.M. Rainforth, and J.H. Beynon: Mater. Trans. 2004, vol. 45, pp. 2157–64.

    Article  Google Scholar 

  43. H. Inagaki: Trans. Iron Steel Inst. Jpn., 1983 vol. 23, pp. 1059–67.

    Article  Google Scholar 

  44. P. Cizek, J.A. Whiteman, W.M. Rainforth, and J.H. Beynon: J. Microsc., 2004, vol. 213, pp. 285–95.

    Article  Google Scholar 

  45. A.S. Taylor, P. Cizek, and P.D. Hodgson: Acta Mater., 2012, vol. 60, 1548–69.

    Article  Google Scholar 

  46. W.T. Reynolds, Jr., H.I. Aaronson, and G. Spanos: Mater. Trans. JIM, 1991, vol. 32, pp. 737–46.

    Article  Google Scholar 

  47. H.K.D.H. Bhadeshia and J.W. Christian: Metall. Trans. A, 1990, vol. 21A, pp. 767–97.

    Article  Google Scholar 

  48. S. Okaguchi, H. Ohtani, and Y. Ohmori, Mater. Trans. JIM, 1991, vol. 32, pp. 697–704.

    Article  Google Scholar 

  49. H.K.D.H. Bhadeshia: Bainite in SteelsTransformations, Microstructure and Properties, 2nd edition, IOM Communications Ltd., London, 2001.

    Google Scholar 

  50. A. Lambert-Perlade, A.F. Gourgues, and A. Pineau: Acta Mater., 2004, vol. 52, pp. 2337–48.

    Article  Google Scholar 

  51. T. Furuhara, H. Kawata, S. Morito, and T. Maki: Mater. Sci. Eng. A, 2006, vol. 431, pp. 228–36.

    Article  Google Scholar 

  52. V. Pancholi, M. Krishnan, I.S. Samajdar, V. Yadav, and N.B. Ballal: Acta Mater., 2008, vol. 56, pp. 2037–50.

    Article  Google Scholar 

  53. N. Takayama, G. Miyamoto, and T. Furuhara: Acta Mater., 2012, vol. 60, pp. 2387–96.

    Article  Google Scholar 

  54. C. Garcia-Mateo, F.G. Caballero, and H.K.D.H. Bhadeshia: Iron Steel Inst. Jpn. Int., 2003, vol. 43, pp. 1238–43.

    Article  Google Scholar 

  55. Y. Ohmori, H. Ohtani, and T. Kunitake: Met. Sci., 1974, vol. 8, pp. 357–66.

    Article  Google Scholar 

Download references

Acknowledgments

Financial support provided by the Australian Research Council is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Cizek.

Additional information

Manuscript submitted June 24, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cizek, P., Wynne, B.P., Davies, C.H.J. et al. The Effect of Simulated Thermomechanical Processing on the Transformation Behavior and Microstructure of a Low-Carbon Mo-Nb Linepipe Steel. Metall Mater Trans A 46, 407–425 (2015). https://doi.org/10.1007/s11661-014-2601-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2601-x

Keywords

Navigation