Skip to main content
Log in

Prediction of Glass-Forming Compositions in Metallic Systems: Copper-Based Bulk Metallic Glasses in the Cu-Mg-Ca System

  • Symposium: Bulk Metallic Glasses VI
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A novel methodology for predicting specific compositions for glass-forming alloys based on efficiently packed atomic cluster selection, liquidus lines, and ab initio calculations is presented. This model has shown applicable adaptation to many known metallic and ceramic oxide glass-forming systems and has led to the discovery of soon to be reported Ag- and Zn-based bulk metallic glasses (BMGs). As a model system, glass formation in the Cu-Mg-Ca ternary system has been assessed using this alloy design methodology, which has led to the discovery of a number of Cu-based BMGs with compositions ranging from Cu-33 to 55 at. pct, Mg-18 to 45 at. pct, and Ca-18 to 36 at. pct. Included in this work are the calculated values of associated cluster binding energies and correlations between physical and thermal properties of these glassy compositions, which show significant physical evidence to support the likely existence of such clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. W. Klement, R.H. Willens, and P. Duwez: Nature, 1960, vol. 187, pp. 869–70.

    Article  ADS  CAS  Google Scholar 

  2. J.D. Bernal and J. Mason: Nature, 1960, vol. 188, pp. 910–11.

    Article  ADS  Google Scholar 

  3. G.D. Scott: Nature, 1960, vol. 188, pp. 908–09.

    Article  MATH  ADS  Google Scholar 

  4. J.L. Finney: Proc. R. Soc. A, 1970, vol. 319, pp. 479–93.

    Article  ADS  CAS  Google Scholar 

  5. P.H. Gaskell: J. Non-Cryst. Solids, 1979, vol. 32, p. 207.

    Article  ADS  CAS  Google Scholar 

  6. J.M. Dubois, P.H. Gaskell, and G. Le Caer: Proc. R. Soc. A, 1985, vol. 402, pp. 323–57.

    Article  ADS  CAS  Google Scholar 

  7. D.B. Miracle, W.S. Sanders, and O.N. Senkov: Phil. Mag. A, 2003, vol. 83, pp. 2409–28.

    Article  CAS  Google Scholar 

  8. D.B. Miracle, O.N. Senkov, W.S. Sanders, and K.L. Kendig: Mater. Sci. Eng. A, 2004, vol. 375, pp. 150–56.

    Article  CAS  Google Scholar 

  9. D.B. Miracle: Nat. Mater., 2004, vol. 3, pp. 697–702.

    Article  PubMed  ADS  CAS  Google Scholar 

  10. D.B. Miracle: Acta Mater., 2006, vol. 54, pp. 4317–36.

    Article  CAS  Google Scholar 

  11. D. Stockdale: Proc. R. Soc. A, 1935, vol. 152, p. 81.

    Article  ADS  CAS  Google Scholar 

  12. W. Hume-Rothery and E. Anderson: Phil. Mag., 1960, vol. 5, pp. 383–405.

    Article  ADS  CAS  Google Scholar 

  13. A.R. Yavari: Nat. Mater., 2005, vol. 4, pp. 2–3.

    Article  PubMed  ADS  CAS  Google Scholar 

  14. D.B. Miracle, D. Louzguine-Luzgin, L. Louzguina-Luzgina, and A. Inoue: “An Assessment of Binary Metallic Glasses: Correlations between Structure, Glass Forming Ability and Stability (Preprint),” Air Force Research Lab, Wright-Patterson AFB, OH.

  15. B. Dumé: “Glass Arrested on the Road to Crystallization,” http://physicsworld.com/cws/article/news/34739.

  16. C.P. Royall, S.R. Williams, T. Ohtsuka, and H. Tanaka: Nat. Mater., 2008, vol. 7, pp. 556–61.

    Article  ADS  CAS  Google Scholar 

  17. Y.Q. Cheng, H.W. Sheng, and E. Ma: Phys. Rev. B, 2008, vol. 78, p. 014207.

    Article  ADS  CAS  Google Scholar 

  18. Q. Wang, J.B. Qiang, J.H. Xia, J. Wu, Y.M. Wang, and C. Dong: Intermetallics, 2007, vol. 15, pp. 711–15.

    Article  CAS  Google Scholar 

  19. Q. Wang, J. Qiang, Y. Wang, J. Xia, and C. Dong: J. Non-Cryst. Solids, 2007, vol. 353, pp. 3425–28.

    Article  ADS  CAS  Google Scholar 

  20. Q. Wang, C. Dong, J. Qiang, and Y. Wang: Mater. Sci. Eng. A, 2007, vol. 449, pp. 18–23.

    Article  CAS  Google Scholar 

  21. A. Inoue: Acta Mater., 2000, vol. 48, pp. 279–306.

    Article  CAS  Google Scholar 

  22. A. Kumara, S.M. Rafique, and N. Jha: Physica B, 2006, vol. 373, pp. 169–76.

    Article  ADS  CAS  Google Scholar 

  23. M. Hino, T. Nagasaka, and R. Takehama: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 927–35.

    Article  CAS  Google Scholar 

  24. O.N. Senkov, D.B. Miracle, and H.M. Mullens: J. Appl. Phys., 2005, vol. 97, pp. 103502–07.

    Article  ADS  CAS  Google Scholar 

  25. T. Egami: Mater. Sci. Eng. A, 1997, vol. 226, pp. 261–67.

    Article  Google Scholar 

  26. H.A. Davies: Amorphous Metallic Alloys, Butterworths, London, 1983, p. 8.

    Google Scholar 

  27. K.M. Myles: J. Less-Common Met., 1970, vol. 20, pp. 149–54.

    Article  CAS  Google Scholar 

  28. K. Amiya and A. Inoue: Mater. Trans. JIM, 2002, vol. 43, pp. 81–84.

    Article  CAS  Google Scholar 

  29. O.N. Senkov, J.M. Scott, and D.B. Miracle: J. Alloys Compd., 2006, vol. 424, pp. 394–99.

    Article  CAS  Google Scholar 

  30. F.Q. Guo, S.J. Poon, X. Gu, and G.J. Shiflet: Scripta Mater., 2007, vol. 56, pp. 689–92.

    Article  CAS  Google Scholar 

  31. K.J. Laws, B. Gun, and M. Ferry: Mater. Sci. Eng. A, 2008, vol. 475, pp. 348–54.

    Article  CAS  Google Scholar 

  32. K.J. Laws, K.F. Shamlaye, B. Gun, and M. Ferry: J. Alloys Compd., 2009, vol. 486, pp. L27–L29.

    Article  CAS  Google Scholar 

  33. B. Delley: J. Chem. Phys., 1990, vol. 92, pp. 508–17.

    Article  ADS  CAS  Google Scholar 

  34. B. Delley: Int. J. Quant. Chem., 1998, vol. 69, pp. 423–33.

    Article  CAS  Google Scholar 

  35. J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, and C. Fiolhais: Phys. Rev. B, 1992, vol. 46, pp. 6671–87.

    Article  ADS  CAS  Google Scholar 

  36. W.L. Johnson: MRS Bull., 1999, vol. 24, pp. 42–56.

    CAS  Google Scholar 

Download references

Acknowledgment

The authors acknowledge the Australian Research Council for partial funding of this work via the ARC Centre of Excellence for Design in Light Metals (Grant No. CEO561574).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin J. Laws.

Additional information

This article is based on a presentation given in the symposium “Bulk Metallic Glasses VI,” which occurred during the TMS Annual Meeting, February 15–19, 2009, in San Francisco, CA, under the auspices of TMS, the TMS Structural Materials Division, TMS/ASM: Mechanical Behavior of Materials Committee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laws, K.J., Shamlaye, K.F., Wong, K. et al. Prediction of Glass-Forming Compositions in Metallic Systems: Copper-Based Bulk Metallic Glasses in the Cu-Mg-Ca System. Metall Mater Trans A 41, 1699–1705 (2010). https://doi.org/10.1007/s11661-010-0274-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-010-0274-7

Keywords

Navigation