Skip to main content
Log in

Stability study of triple layer hollow fiber in solid oxide fuel cell with methane as fuel

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Solid oxide fuel cell (SOFC) is an attractive device that can convert chemical into energy. Recently, the triple layer hollow fiber (TLHF) opens up a new discovery of higher power output. This study investigates the fabrication of TLHF in solid oxide fuel cell consisting anode/anode functional layer (AFL)/electrolyte (NiO-YSZ/NiO-YSZ/YSZ) via single-step phase inversion-based co-extrusion combined with co-sintering technique using methane as fuel. TLHF formed sandwich-like structure that corresponds to the anode and AFL with dense electrolyte. Initially, the open circuit voltage (OCV) was 1.1 V, after 90 min, the OCV dropped to 0.2 V due to the carbon deposits that caused poisoning. Meanwhile, the power density also reduces from 0.8 to 0.33 Wcm−2. SEM image carbon shows the carbon deposited causing crack and reached electrolyte layer. TEM of the Ni catalyst indicates there are multilayer of graphite exhibit at the Ni particle courtesy of the carbon deposits. The results showed the graphite causing the performance to decrease which is corresponding to the usage of methane as fuel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Li C-X, Li C-J, Guo L-J (2010) Effect of composition of NiO/YSZ anode on the polarization characteristics of SOFC fabricated by atmospheric plasma spraying. Int J Hydrog Energy 35(7):2964–2969

    CAS  Google Scholar 

  2. Howe KS, Thompson GJ, Kendall K (2011) Micro-tubular solid oxide fuel cells and stacks. J Power Sources 196(4):1677–1686

    CAS  Google Scholar 

  3. Zhao Y, Xia C, Jia L, Wang Z, Li H, Yu J, Li Y (2013) Recent progress on solid oxide fuel cell: lowering temperature and utilizing non-hydrogen fuels. Int J Hydrog Energy 38(36):16498–16517

    CAS  Google Scholar 

  4. Kendall K, Minh NQ, Singhal SC (2003) Chapter 8—cell and stack designs, in high temperature and solid oxide fuel cells. Elsevier Science, Amsterdam, pp 197–228

    Google Scholar 

  5. Akhtar N, Kendall K (2011) Micro-tubular, solid oxide fuel cell stack operated under single-chamber conditions. Int J Hydrog Energy 36(20):13083–13088

    CAS  Google Scholar 

  6. Meng X, Yang N, Meng B, Tan X, Yin Y, Ma Z-F, Sunarso J (2012) Microstructure tailoring of the nickel–yttria stabilised zirconia (Ni–YSZ) cermet hollow fibres. Ceram Int 38(8):6327–6334

    CAS  Google Scholar 

  7. Hatchwell C, Sammes NM, Brown IWM, Kendall K (1999) Current collectors for a novel tubular design of solid oxide fuel cell. J Power Sources 77(1):64–68

    CAS  Google Scholar 

  8. Grande FD, Thursfield A, Kanawka K, Droushiotis N, Doraswami U, Li K, Kelsall G, Metcalfe IS (2009) Microstructure and performance of novel Ni anode for hollow fibre solid oxide fuel cells. Solid State Ionics 180(11–13):800–804

    Google Scholar 

  9. Bi L, Fabbri E, Traversa E (2012) Effect of anode functional layer on the performance of proton-conducting solid oxide fuel cells (SOFCs). Electrochem Commun 16(1):37–40

    CAS  Google Scholar 

  10. Zhang X, Qiu YE, Jin F, Guo F, Song Y, Zhu B (2013) A highly active anode functional layer for solid oxide fuel cells based on proton-conducting electrolyte BaZr0.1Ce0.7Y0.2O3−δ. J Power Sources 241:654–659

    CAS  Google Scholar 

  11. Yamaguchi T, Sumi H, Hamamoto K, Suzuki T, Fujishiro Y, Carter JD, Barnett SA (2014) Effect of nanostructured anode functional layer thickness on the solid-oxide fuel cell performance in the intermediate temperature. Int J Hydrog Energy 39(34):19731–19736

    CAS  Google Scholar 

  12. Meng X, Yang N, Gong X, Yin Y, Ma Z-F, Tan X, Shao Z, Liu S (2015) Novel cathode-supported hollow fibers for light weight micro-tubular solid oxide fuel cells with an active cathode functional layer. J Mater Chem A 3(3):1017–1022

    CAS  Google Scholar 

  13. Li T, Wu Z, Li K (2015) Co-extrusion of electrolyte/anode functional layer/anode triple-layer ceramic hollow fibres for micro-tubular solid oxide fuel cells–electrochemical performance study. J Power Sources 273:999–1005

    CAS  Google Scholar 

  14. Suzuki T, Sugihara S, Yamaguchi T, Sumi H, Hamamoto K, Fujishiro Y (2011) Effect of anode functional layer on energy efficiency of solid oxide fuel cells. Electrochem Commun 13(9):959–962

    CAS  Google Scholar 

  15. Chen K, Chen X, Lü Z, Ai N, Huang X, Su W (2008) Performance of an anode-supported SOFC with anode functional layers. Electrochim Acta 53(27):7825–7830

    CAS  Google Scholar 

  16. Mohd Hafiz Dzarfan O, Mukhlis AR, Kang L, Juhana J, Hasrinah H, Ahmad Fauzi I (2015) Ceramic hollow-fiber support through a phase inversion-based extrusion/sintering technique for high-temperature energy conversion systems, in Membrane Fabrication. CRC Press, Boca Raton, pp 347–382

    Google Scholar 

  17. Mohd Hafiz Dzarfan Othman, Siti Munira Jamil, Mukhlis A. Rahman, Juhana Jaafar and A.F. Ismail, Electrolyte hollow fiber as support via phase-inversion-based extrusion/sintering technique for micro tubular solid oxide fuel cell, in Frontiers in Ceramic Science. 2017. p. 107–131

  18. Wang H, Liu J (2012) Effect of anode structure on performance of cone-shaped solid oxide fuel cells fabricated by phase inversion. Int J Hydrog Energy 37(5):4339–4345

    CAS  Google Scholar 

  19. Mahmud LS, Muchtar A, Somalu MR (2017) Challenges in fabricating planar solid oxide fuel cells: a review. Renew Sust Energ Rev 72:105–116

    CAS  Google Scholar 

  20. He B, Ling Y, Xu J, Zhao L, Cheng J (2014) Effect of nickel impregnated hollow fiber anode for micro tubular solid oxide fuel cells. J Power Sources 258:391–394

    CAS  Google Scholar 

  21. Meng X, Gong X, Yin Y, Yang N, Tan X, Ma Z-F (2014) Effect of the co-spun anode functional layer on the performance of the direct-methane microtubular solid oxide fuel cells. J Power Sources 247:587–593

    CAS  Google Scholar 

  22. Li T, Wu Z, Li K (2014) Single-step fabrication and characterisations of triple-layer ceramic hollow fibres for micro-tubular solid oxide fuel cells (SOFCs). J Membr Sci 449:1–8

    CAS  Google Scholar 

  23. Sun W, Zhang N, Mao Y, Sun K (2012) Fabrication of anode-supported Sc2O3-stabilized-ZrO2 electrolyte micro-tubular solid oxide fuel cell by phase-inversion and dip-coating. Electrochem Commun 20:117–120

    CAS  Google Scholar 

  24. Meng X, Yan W, Yang N, Tan X, Liu S (2015) Highly stable microtubular solid oxide fuel cells based on integrated electrolyte/anode hollow fibers. J Power Sources 275:362–369

    CAS  Google Scholar 

  25. Droushiotis N, Othman MHD, Doraswami U, Wu Z, Kelsall G, Li K (2009) Novel co-extruded electrolyte–anode hollow fibres for solid oxide fuel cells. Electrochem Commun 11(9):1799–1802

    CAS  Google Scholar 

  26. Park SY, Ahn JH, Jeong CW, Na CW, Song RH, Lee JH (2014) Ni-YSZ-supported tubular solid oxide fuel cells with GDC interlayer between YSZ electrolyte and LSCF cathode. Int J Hydrog Energy 39(24):12894–12903

    CAS  Google Scholar 

  27. Balachandran U, Dusek JT, Maiya PS, Ma B, Mieville RL, Kleefisch MS, Udovich CA (1997) Ceramic membrane reactor for converting methane to syngas. Catal Today 36(3):265–272

    CAS  Google Scholar 

  28. Asano K, Hibino T, Iwahara H (1995) A novel solid oxide fuel-cell system using the partial oxidation of methane. J Electrochem Soc 142(10):3241–3245

    CAS  Google Scholar 

  29. Assabumrungrat S, Laosiripojana N, Piroonlerkgul P (2006) Determination of the boundary of carbon formation for dry reforming of methane in a solid oxide fuel cell. J Power Sources 159(2):1274–1282

    CAS  Google Scholar 

  30. Lee D, Myung J, Tan J, Hyun S-H, Irvine JTS, Kim J, Moon J (2017) Direct methane solid oxide fuel cells based on catalytic partial oxidation enabling complete coking tolerance of Ni-based anodes. J Power Sources 345:30–40

    CAS  Google Scholar 

  31. Zhu H, Wang W, Ran R, Shao Z (2013) A new nickel–ceria composite for direct-methane solid oxide fuel cells. Int J Hydrog Energy 38(9):3741–3749

    CAS  Google Scholar 

  32. Wang Y-G, Sun L-L, Luo L-H, Wu Y-F, Liu L-L, Shi J-J (2014) The study of portable direct-flame solid oxide fuel cell (DF-SOFC) stack with butane fuel. J Fuel Chem Technol 42(9):1135–1139

    CAS  Google Scholar 

  33. Kim T, Liu G, Boaro M, Lee SI, Vohs JM, Gorte RJ, Al-Madhi OH, Dabbousi BO (2006) A study of carbon formation and prevention in hydrocarbon-fueled SOFC. J Power Sources 155(2):231–238

    CAS  Google Scholar 

  34. da Silva CA, de Miranda PEV (2015) Synthesis of LaAlO3 based materials for potential use as methane-fueled solid oxide fuel cell anodes. Int J Hydrog Energy 40(32):10002–10015

    Google Scholar 

  35. Harun Z, Hubadillah SK, Hasan S, Yunos MZ (2014) Effect of thermodynamic properties on porosity of ceramic membrane prepared by phase inversion. Appl Mech Mater 575:31–35

    CAS  Google Scholar 

  36. Hubadillah SK, Othman MHD, Ismail AF, Rahman MA, Jaafar J, Iwamoto Y, Honda S, Dzahir MIHM, Yusop MZM (2018) Fabrication of low cost, green silica based ceramic hollow fibre membrane prepared from waste rice husk for water filtration application. Ceram Int 44(9):10498–10509

    CAS  Google Scholar 

  37. Hubadillah SK, Othman MHD, Ismail AF, Rahman MA, Jaafar J (2018) A low cost hydrophobic kaolin hollow fiber membrane (h-KHFM) for arsenic removal from aqueous solution via direct contact membrane distillation. Sep Purif Technol

  38. Hubadillah SK, Othman MHD, Matsuura T, Rahman MA, Jaafar J, Ismail AF, Amin SZM (2018) Green silica-based ceramic hollow fiber membrane for seawater desalination via direct contact membrane distillation. Sep Purif Technol 205:22–31

    CAS  Google Scholar 

  39. Kingsbury BFK, Li K (2009) A morphological study of ceramic hollow fibre membranes. J Membr Sci 328(1–2):134–140

    CAS  Google Scholar 

  40. Wang B, Lai Z (2012) Finger-like voids induced by viscous fingering during phase inversion of alumina/PES/NMP suspensions. J Membr Sci 405–406:275–283

    Google Scholar 

  41. Othman MHD, Droushiotis N, Wu Z, Kelsall G, Li K (2012) Dual-layer hollow fibres with different anode structures for micro-tubular solid oxide fuel cells. J Power Sources 205:272–280

    CAS  Google Scholar 

  42. Othman, M.H.D., Droushiotis, N., Wu, Z., Kelsall, G., and Li, K., High-performance, anode-supported, microtubular SOFC prepared from single-step-fabricated, dual-layer hollow fibers. Advanced Materials, 2011. 23(21): p. 2480–2483

    CAS  PubMed  Google Scholar 

  43. Othman MHD, Wu Z, Droushiotis N, Kelsall G, Li K (2010) Morphological studies of macrostructure of Ni–CGO anode hollow fibres for intermediate temperature solid oxide fuel cells. J Membr Sci 360(1–2):410–417

    CAS  Google Scholar 

  44. Bayati R, Molaei R, Richmond A, Nori S, Wu F, Kumar D, Narayan J, Reynolds JG, Reynolds CL (2014) Modification of properties of yttria stabilized zirconia epitaxial thin films by excimer laser annealing. ACS Appl Mater Interfaces 6(24):22316–22325

    CAS  PubMed  Google Scholar 

  45. Hanna J, Lee WY, Shi Y, Ghoniem AF (2014) Fundamentals of electro- and thermochemistry in the anode of solid-oxide fuel cells with hydrocarbon and syngas fuels. Prog Energy Combust Sci 40:74–111

    Google Scholar 

  46. Chen K, Lü Z, Ai N, Huang X, Zhang Y, Ge X, Xin X, Chen X, Su W (2007) Fabrication and performance of anode-supported YSZ films by slurry spin coating. Solid State Ionics 177(39–40):3455–3460

    CAS  Google Scholar 

  47. Baker RTK, Barber MA, Harris PS, Feates FS, Waite RJ (1972) Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene. J Catal 26(1):51–62

    CAS  Google Scholar 

  48. Trimm DL (1997) Coke formation and minimisation during steam reforming reactions. Catal Today 37(3):233–238

    CAS  Google Scholar 

  49. Cimenti M, Hill MJ (2009) Direct utilization of liquid fuels in SOFC for portable applications: challenges for the selection of alternative anodes. Energies 2(2)

    CAS  Google Scholar 

  50. He H, Hill JM (2007) Carbon deposition on Ni/YSZ composites exposed to humidified methane. Appl Catal A Gen 317(2):284–292

    CAS  Google Scholar 

  51. Yang RT, Goethel PJ, Schwartz JM, Lund CRF (1990) Solubility and diffusivity of carbon in metals. J Catal 122(1):206–210

    CAS  Google Scholar 

  52. Sumi H, Lee Y-H, Muroyama H, Matsui T, Kamijo M, Mimuro S, Yamanaka M, Nakajima Y, Eguchi K (2011) Effect of carbon deposition by carbon monoxide disproportionation on electrochemical characteristics at low temperature operation for solid oxide fuel cells. J Power Sources 196(10):4451–4457

    CAS  Google Scholar 

  53. Sameshima S, Furukawa N, Hirata Y, Shimonosono T (2014) Cell performance of SOFC using CH4–CO2 mixed gases. Ceram Int 40(4):6279–6284

    CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support from Universiti Teknologi Malaysia under Research University Grant R&D Fund (Project number: Q.J130000.7746.4J309) and Tier 1 (Project number: Q.J130000.2546.16H40)). The authors would also like to thank Research Management Centre, Universiti Teknologi Malaysia for the technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd Hafiz Dzarfan Othman.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohamed, M.H., Othman, M.H.D., Mohd Yusop, M.Z. et al. Stability study of triple layer hollow fiber in solid oxide fuel cell with methane as fuel. Ionics 26, 3073–3083 (2020). https://doi.org/10.1007/s11581-020-03506-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-020-03506-8

Keywords

Navigation