Skip to main content
Log in

One-pot synthesized mesoporous Ni–Co hydroxide for high performance supercapacitors

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Mesoporous Ni(OH)2/Co(OH)2 electrode materials were synthesized via a simple one-pot procedure by combining homogeneous precipitation and stepwise precipitation method. The configuration of the porous Ni(OH)2/Co(OH)2 electrode materials synthesized provides 3D electron transmission channels through a high conductive Co(OH)2 distributed in the peripheral nanolayer of the composites, which is beneficial to rate capability and cycle stability. The Ni(OH)2/Co(OH)2 electrode materials have a specific surface area of 229 m2 g−1, which is approximately 40% higher than that of Ni(OH)2 (163 m2 g−1). Their specific capacitance is up to 1202 and 1022 F g−1 at the current densities of 10 and 20 A g−1, respectively. Furthermore, the capacitance retention of the electrode materials at the current density of 10 A g−1 is 98% after 5000 cycles. The synthesis method provides a novel simple route to fabricate heterostructure materials for capacitors with high electrochemical performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2.
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zhao D, Feng Y-L, Wang Y-G, Xia Y-Y (2013) Electrochemical performance comparison of LiFePO4 supported by various carbon materials. Electrochim Acta 88:632–638

    Article  CAS  Google Scholar 

  2. Yao Y, Wu F (2015) Naturally derived nanostructured materials from biomass for rechargeable lithium/sodium batteries. Nano Energy 17:91–103

    Article  CAS  Google Scholar 

  3. Wang RH, Xu CH, Lee J-M (2016) High performance asymmetric supercapacitors: new NiOOH nanosheet/graphene hydrogels and pure graphene hydrogels. Nano Energy 19:210–221

    Article  CAS  Google Scholar 

  4. Zhou JS, Lian J, Hou L, Zhang JC, Gou HY, Xia MR, Zhao YF, Strobel TA, Tao L, Gao FM (2015) Ultrahigh volumetric capacitance and cyclic stability of fluorine and nitrogen co-doped carbon microspheres. Nat Commun 6:8503–8510

    Article  CAS  Google Scholar 

  5. Qiao YQ, Wang HP, Zhang XY, Jia P, Shen TD, Hao XF, Tang YF, Wang XH, Gao WM, Kong LX (2016) Ultrahigh volumetric capacitance biomorphic porous carbon material derived from mold. Mater Lett 2016(184):252–256

    Article  Google Scholar 

  6. Li ZY, Akhtar MS, Yang O-B (2015) Supercapacitors with ultrahigh energy density based on mesoporous carbon nanofibers: enhanced double-layer electrochemical properties. J Alloys Compd 653:212–218

    Article  CAS  Google Scholar 

  7. Li YJ, Wang GL, Wei T, Fan ZJ, Yan P (2016) Nitrogen and sulfur co-doped porous carbon nanosheets derived from willow catkin for supercapacitors. Nano Energy 19:165–175

    Article  CAS  Google Scholar 

  8. Brousse T, Bèlanger D, Long JW (2015) To be or not to be pseudocapacitive. J Electrochem Soc 162:A5185–A5189

    Article  CAS  Google Scholar 

  9. Simon P, Gogotsi Y, Dunn B (2014) Where do batteries end and supercapacitors begin. Sci Mag 343:1210–1211

    CAS  Google Scholar 

  10. Du JP, Shao GJ, Qin XJ, Wang GL, Zhang Y, Ma ZP (2012) High specific surface area MnO2 electrodeposited under supergravity field for supercapacitors and its electrochemical properties. Mater Lett 84:13–15

    Article  CAS  Google Scholar 

  11. Li YT, Zhang S, Song HH, Chen XH, Zhou JS, Hong S (2015) New insight into the heteroatom-doped carbon as the electrode material for supercapacitors. Electrochim Acta 180:879–886

    Article  CAS  Google Scholar 

  12. Chen WZ, Shi JJ, Zhu TS, Wang Q, Qiao JL, Zhang JJ (2015) Preparation of nitrogen and sulfur dual-doped mesoporous carbon for supercapacitor electrodes with long cycle stability. Electrochim Acta 177:327–334

    Article  CAS  Google Scholar 

  13. Chen AB, Yu YF, Xing TT, Wang RJ, Li YL, Li YT (2015) Synthesis of nitrogen-doped hierarchical porous carbon for supercapacitors. Mater Lett 157:30–33

    Article  CAS  Google Scholar 

  14. Li YJ, Yu N, Yan P, Li YG, Zhou XM, Chen SL, Wang GL, Wei T, Fan ZJ (2015) Fabrication of manganese dioxide nanoplates anchoring on biomass derived cross-linked carbon nanosheets for high-performance asymmetric supercapacitors. J Power Sources 300:309–317

    Article  CAS  Google Scholar 

  15. Xiong YC, Zhou M, Chen H, Feng L, Wang Z, Yan XZ, Guan SY (2015) Synthesis of honeycomb MnO2 nanospheres/carbon-nanoparticles/graphene composites as electrode materials for supercapacitors. Appl Surf Sci 357:1024–1030

    Article  CAS  Google Scholar 

  16. Liu RH, Liu EH, Ding R, Liu K, Teng Y, Luo ZY, Li ZP, Hu TT, Liu TT (2015) Facile in-situ redox synthesis of hierarchical porous activated carbon@MnO2 core/shell nanocomposite for supercapacitors. Ceram Int 41:12734–12741

    Article  CAS  Google Scholar 

  17. Yi HT, Zhu YQ, Chen XY, Zhang ZJ (2015) Nitrogen and sulfur co-doped nanoporous carbon material derived from p-nitrobenzenamine within several minutes and the supercapacitor application. J Alloys Compd 649:851–858

    Article  CAS  Google Scholar 

  18. Li M, Cheng JP, Liu F, Zhang XB (2015) In situ growth of nickel-cobalt oxyhydroxide/oxide on carbon nanotubes for high performance supercapacitors. Electrochim Acta 178:439–446

    Article  CAS  Google Scholar 

  19. Lai FL, Huang YP, Miao Y-E, Liu TX (2015) Controllable preparation of multi-dimensional hybrid materials of nickel-cobalt layered double hydroxide nanorods/nanosheets on electrospun carbon nanofibers for high-performance supercapacitors. Electrochim Acta 174:456–463

    Article  CAS  Google Scholar 

  20. Song W, Shao GJ, Wang GL, Ma ZP, Liu S, Song JJ, Wang CX (2014) Enhanced electrochemical performance of nano-MnO2 modified by Ni(OH)2 as electrode material for supercapacitor. J Solid State Electr 18:3173–3180

    Article  CAS  Google Scholar 

  21. Tang YF, Liu YY, Yua SX, Zhao YF, Mu SC, Gao FM (2014) Hydrothermal synthesis of a flower-like nano-nickel hydroxide for high performance supercapacitors. Electrochim Acta 123:158–166

    Article  CAS  Google Scholar 

  22. Wang L, Lin C, Zhang FX, Jin J (2014) Phase transformation guided single-layerβ-Co(OH)2 nanosheets for pseudocapacitive electrodes. ACS Nano 8:3724–3734

    Article  CAS  Google Scholar 

  23. Wang HL, Casalongue HS, Liang YY, Dai HJ (2010) Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials. J Am Chem Soc 132:7472–7477

    Article  CAS  Google Scholar 

  24. Li HB, Yu MH, Wang FX, Liu P, Liang Y, Xiao J, Wang CX, Tong YX, Yang GW (2013) Amorphous nickel hydroxide nanospheres with ultrahigh capacitance and energy density as electrochemical pseudocapacitor materials. Nat Commun 4:1894–1900

    Article  CAS  Google Scholar 

  25. Zhang JT, Liu S, Pan GL, Li GR, Gao XP (2014) A 3D hierarchical porous α-Ni(OH)2/graphite nanosheet composite as an electrode material for supercapacitors. J Mater Chem A 2:1524–1529

    Article  CAS  Google Scholar 

  26. Qu LB, Zhao YL, Khan AM, Han CH, Hercule KM, Yan MY, Liu XY, Chen W, Wang DD, Cai ZY, Xu WW, Zhao KN, Zheng XL, Mai LQ (2015) Interwoven three-dimensional architecture of cobalt oxide nanobrush-graphene@NixCo2x(OH)6x for high-performance supercapacitors. Nano Lett 15:2037–2044

    Article  CAS  Google Scholar 

  27. Wu HB, Pang H, Lou XW (2013) Facile synthesis of mesoporous Ni0.3Co2.7O4 hierarchical structures for high-performances supercapacitors. Energy Environ Sci 6:3619–3626

    Article  CAS  Google Scholar 

  28. Zhang GQ, Lou XW (2013) General solution growth of mesoporous NiCo2O4 nanosheets on various conductive substrates as high-performance electrodes for supercapacitors. Adv Mater 25:976–979

    Article  CAS  Google Scholar 

  29. Hu H, Guan BY, Xia BY, Lou XW (2015) Designed formation of Co3O4/NiCo2O4 double-shelled nanocages with enhanced pseudocapacitive and electrocatalytic properties. J Am Chem Soc 137:5590–5595

    Article  CAS  Google Scholar 

  30. Guo Y, Yu L, Wang CY, Lin Z, Lou XW (2015) Hierarchical tubular structures composed of Mn-based mixed metal oxide Nanofl akes with enhanced electrochemical properties. Adv Funct Mater 25:5184–5189

    Article  CAS  Google Scholar 

  31. Jing MJ, Hou HS, Banks CE, Yang YC, Zhang Y, Ji XB (2015) Alternating voltage introduced NiCo double hydroxide layered nanoflakes for an asymmetric supercapacitor. ACS Appl Mater Interfaces 7:22741–22744

    Article  CAS  Google Scholar 

  32. Wang CH, Zhang X, Xu ZT, Sun XZ, Ma YW (2015) Ethylene glycol intercalated cobalt/nickel layered double hydroxide nanosheet assemblies with ultrahigh specific capacitance: structural design and green synthesis for advanced electrochemical storage. ACS Appl Mater Interfaces 7:19601–19610

    Article  CAS  Google Scholar 

  33. Sun X, Wang GK, Sun HT, Lu FY, Yu MP, Lian J (2013) Morphology controlled high performance supercapacitor behaviour of the Ni-Co binary hydroxide system. J Power Sources 238:150–156

    Article  CAS  Google Scholar 

  34. Martins PR, Parussulo ALA, Toma SH, Rocha MA, Toma HE, Araki K (2012) Highly stabilized alpha-NiCo(OH)2 nanomaterials for high performance device application. J Power Sources 218:1–4

    Article  CAS  Google Scholar 

  35. Yuan P, Zhang N, Zhang D, Liu T, Chen LM, Ma RZ, Qiu GZ, Liu XH (2016) Controllable synthesis of layered Co-Ni hydroxide hierarchical structures for high-performance hybrid supercapacitors. J Phys Chem Solids 88:8–13

    Article  CAS  Google Scholar 

  36. Tang YF, Liu YY, Yu SX, Guo WC, Mu SC, Wang HC, Zhao YF, Hou L, Fan YQ, Gao FM (2015) Template-free hydrothermal synthesis of nickel cobalt hydroxide nanoflowers with high performance for asymmetric supercapacitor. Electrochim Acta 161:279–289

    Article  CAS  Google Scholar 

  37. Patil UM, Sohn JS, Kulkarni SB, Lee SC, Park HG, Gurav KV, Kim JH, Jun SC (2014) Enhanced supercapacitive performance of chemically grown cobalt-nickel hydroxides on three-dimensional graphene foam electrodes. ACS Appl Mater Interfaces 6:2450–2458

    Article  CAS  Google Scholar 

  38. Dong S, Dao AQ, Zheng BJ, Tan ZY, Fu CY, Liu HF, Xiao F (2015) One-step electrochemical synthesis of three-dimensional grapheme foam loaded nickel–cobalt hydroxides nanoflakes and its electrochemical properties. Electrochim Acta 152:195–201

    Article  CAS  Google Scholar 

  39. Warsi MF, Shakir I, Shahid M, Sarfraz M, Nadeem M, Gilani ZA (2014) Conformal coating of cobalt-nickel layered double hydroxides nanoflakes on carbon fibers for high-performance electrochemical energy storage supercapacitor devices. Electrochim Acta 135:513–518

    Article  CAS  Google Scholar 

  40. Li M, Ma KY, Cheng JP, Lv DH, Zhang XB (2015) Nickel-cobalt hydroxide nanoflakes conformal coating on carbon nanotubes as a supercapacitive material with high-rate capability. J Power Sources 286:438–444

    Article  CAS  Google Scholar 

  41. Chen HY, Cai F, Kang YR, Zeng S, Chen MH, Li QW (2014) Facile assembly of Ni-Co hydroxide nanoflakes on carbon nanotube network with highly electrochemical capacitive performance. ACS Appl Mater Interfaces 6:19630–19637

    Article  CAS  Google Scholar 

  42. Pu J, Tong Y, Wang SB, Sheng EH, Wang ZH (2014) Nickel-cobalt hydroxide nanosheets arrays on Ni foam for pseudocapacitor applications. J Power Sources 250:250–256

    Article  CAS  Google Scholar 

  43. Shang CQ, Dong SM, Wang S, Xiao DD, Han PX, Wang XG, Gu L, Cui GL (2013) Coaxial NixCo2x(OH)6x/TiN nanotube arrays as supercapacitor electrodes. ACS Nano 7:5430–5436

    Article  CAS  Google Scholar 

  44. Qiao YQ, Jia P, Zhang XY, Xia JY, Hao XF, Tang YF, Wang XH (2015) Template-free synthesis of mesoporous nickel oxide electrode material with three-dimensional flowerlike morphology. Electrochim Acta 186:314–320

    Article  CAS  Google Scholar 

  45. Lide DR (1993-1994) CRC handbook of chemistry and physics, 74th edn. CRC Press, Boca Raton, pp 8–49

    Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support by the Natural Science Foundation of Hebei Province (No. B2016203391), the Natural Science Research Keystone Program of Universities in Hebei Province (No. ZD2016075), and the Foundation of the Key Technology Research and Development Program of Qinhuangdao (No. 201501B008).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuqing Qiao or Weimin Gao.

Additional information

Highlights

• Mesoporous Ni(OH)2/Co(OH)2 with heterostructure was fabricated.

• Homogeneous precipitation and stepwise precipitation method was utilized.

• The electrode displays a high capacitance of 1022 F g−1 at 20 A g−1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiao, Y., Jia, P., Zhang, X. et al. One-pot synthesized mesoporous Ni–Co hydroxide for high performance supercapacitors. Ionics 23, 1229–1238 (2017). https://doi.org/10.1007/s11581-016-1914-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-016-1914-8

Keywords

Navigation