Skip to main content
Log in

Study on LiFe1 − x Sm x PO4/C used as cathode materials for lithium-ion batteries with low Sm component

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

LiFe1 − x Sm x PO4/C cathode materials were synthesized though a facile hydrothermal method. Compared with high-temperature solid-phase sintering, the method can allow for the fabrication of low Sm content (2 %), a scarce and expensive rare earth element, while the presence of an optimized carbon coating with large amount of sp2-type carbon sharply increases the material’s electrochemical performance. The high-rate dischargeability at 5 C, as well as the exchange current density, can be increased by 21 and 86 %, respectively, which were attributed to the fine size and the large cell parameter a/c as much. It should be pointed out that the a/c value will be increased for the LiFePO4 Sm-doped papered by both of the two methods, while the mechanism is different: The value c is increased for the front and the value a is decreased for the latter, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Scrosati B (2000) Recent advances in lithium ion battery materials. Electrochim Acta 45:2461–2466

    Article  CAS  Google Scholar 

  2. Pasquier AD, Huang CC, Spitler T (2009) Nano Li4Ti5O12–LiMn2O4 batteries with high power capability and improved cycle-life. J Power Sources 186:508–514

    Article  Google Scholar 

  3. Wang JW, Liu J, Yang GL et al (2009) Electrochemical performance of Li3V2(PO4)3/C cathode material using a novel carbon source. Electrochim Acta 54:6451–6454

    Article  CAS  Google Scholar 

  4. Zhai J, Zhao MS, Wang DD et al (2010) Effect of MgO nanolayer coated on Li3V2(PO4)3/C cathode material for lithium-ion battery. J Alloys Compd 502:401–406

    Article  CAS  Google Scholar 

  5. Hu W, Zhang XB, Cheng YL et al (2011) Low-cost and facile one-pot synthesis of pure single-crystallinee-Cu0.95V2O5 anoribbons: high capacity cathode material for rechargeable Li-ion batteriesw. Chem Commun 47:5250–5252

    Article  CAS  Google Scholar 

  6. Ma DL, Cao ZY, Wang HG et al (2012) Three-dimensionally ordered macroporous FeF3 and its in situ homogenous polymerization coating for high energy and power density lithium ion batteries. Energy Environ Sci 5:8538–8542

    Article  CAS  Google Scholar 

  7. Wang GG, Ma DL, Huang Y et al (2012) Electrospun V2O5 nanostructures with controllable morphology as high-performance cathode materials for lithium-Ion batteries. Chem Eur J 18:8987–8993

    Article  CAS  Google Scholar 

  8. Zhai J, Zhao MS, Wang YZ (2014) Effect of A2O3 -coating on the electrochemical performances of Li3 V 2 (PO 4) 3 /C cathode material. J Solid State Electrochem 18:2857–2862

    Article  CAS  Google Scholar 

  9. Padhi AK, Nanjundaswamy KS, Masquelier C et al (1997) Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphates. Electrochem Soc 144(5):1609–1613

    Article  CAS  Google Scholar 

  10. Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. Electrochem Soc 144(4):1188–1194

    Article  CAS  Google Scholar 

  11. Qin X, Wang J, Xie J et al (2012) Hydrothermally synthesized LiFePO4 crystals with enhanced electrochemical properties: simultaneous suppression of crystal growth along [010] and antisite defect formation. Phys Chem Chem Phys 14(8):2669–2677

    Article  CAS  Google Scholar 

  12. Wang Q, Deng S, Wang H et al (2013) Hydrothermal synthesis of hierarchical LiFePO4 microspheres for lithium ion battery. Alloys Compd 553:69–74

    Article  CAS  Google Scholar 

  13. Andersson AS, Thomas JO (2001) The source of first-cycle capacity loss in LiFePO4. Power Sources 97–98:498–502

    Article  Google Scholar 

  14. Myung ST, Komaba S, Hirosaki N, Yashiro H (2004) Emulsion drying synthesis of olivine LiFePO4/C composite and its electrochemical properties as lithium intercalation material. Electrochim Acta 49(24):4213–4222

    Article  CAS  Google Scholar 

  15. Wu XL, Jiang LY, Cao FF et al (2009) LiFePO4 nanoparticles embedded in a nanoporous carbon matrix: superior cathode material for electrochemical energy‐storage devices. Adv Mater 21(25–26):2710–2714

    Article  CAS  Google Scholar 

  16. Cho YD, Fey GTK, Kao HM (2008) Physical and electrochemical properties of La-doped LiFePO4/C composites as cathode materials for lithium-ion batteries. Solid State Electrochemistry 12(7–8):815–823

    Article  CAS  Google Scholar 

  17. Chung SY, Bloking JT, Chiang YM (2002) Electronically conductive phospho-olivines as lithium storage electrodes. Nat Mater 1(2):123–128

    Article  CAS  Google Scholar 

  18. Ni J, Morishita M, Kawabe Y et al (2010) Hydrothermal preparation of LiFePO4 nanocrystals mediated by organic acid. Power Sources 195(9):2877–2882

    Article  CAS  Google Scholar 

  19. Zhao RR, Hung IM, Li YT et al (2012) Synthesis and properties of Co-doped LiFePO4 as cathode material via a hydrothermal route for lithium-ion batteries. Alloys Compd 513(5):282–288

    Article  CAS  Google Scholar 

  20. Chen YC, Chen JM, Hsu CH et al (2010) Electrochemical and structural studies of LiCo1/3Mn1/3Fe1/3PO4 as a cathode material for lithium ion batteries. Power Sources 195(19):6867–6872

    Article  CAS  Google Scholar 

  21. Bauer EM, Bellitto C, Righini G et al (2005) A versatile method of preparation of carbon-rich LiFePO4: a promising cathode material for Li-ion batteries. Power Sources 146(1):544–549

    Article  CAS  Google Scholar 

  22. Bruce PG, Scrosati B, Tarascon JM (2008) Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed 47(16):2930–2946

    Article  CAS  Google Scholar 

  23. Saravanan K, Reddy MV, Balaya P et al (2009) Storage performance of LiFePO4 nanoplates. J Mater Chem 19(5):605–610

    Article  CAS  Google Scholar 

  24. Gao B, Fan H, Zhang X (2012) Hydrothermal synthesis of single crystal MoO3 nanobelts and their electrochemical properties as cathode electrode materials for rechargeable lithium batteries. Phys Chem Solids 73(3):423–429

    Article  CAS  Google Scholar 

  25. Wang G, Cheng Y, Yan M et al (2007) Li0.99Ti0.01FePO4/C composite as cathode material for lithium ion battery. Solid State Electrochem 11(4):457–462

    Article  CAS  Google Scholar 

  26. Yin XG, Huang K, Liu SQ et al (2010) Preparation and characterization of Na-doped LiFePO4/C composites as cathode materials for lithium-ion batteries. Power Sources 195(13):4308–4312

    Article  CAS  Google Scholar 

  27. Bard AJ, Faulker LR (1986) Electrochemical methods-fundamental and applications. In: Gu L Y, Lu M X, Song S Z, Translate. Beijing: Chemical Industry Publishing Company, 121

  28. Zhao X, Tang X, Zhang L et al (2010) Effects of neodymium aliovalent substitution on the structure and electrochemical performance of LiFePO4. Electrochim Acta 55(20):5899–5904

    Article  CAS  Google Scholar 

  29. Zheng S, Wang X, Huang X et al (2012) Hydrothermal synthesis of Ni-doped carom-like LiFe0.95Ni0.05PO4 powders. Ceram Int 38(5):4391–4394

    Article  CAS  Google Scholar 

  30. Göktepe H (2013) Electrochemical performance of Yb-doped LiFePO4/C composites as cathode materials for lithium-ion batteries. Res Chem Intermed 39(7):2979–2987

    Article  Google Scholar 

  31. Zhang QM, Qiao YQ, Zhao MS et al (2012) Structure and electrochemical performance of Sm-doped lithium Iron phosphate cathode Materials. Chin J Inorg Chem 28(1):67–73

    Article  Google Scholar 

  32. Pang LJ, Zhao MS, Zhao X et al (2012) Preparation and electrochemical performance of Gd-doped LiFePO4/C composites. Power Source 201(1):253–258

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Foundation of State Key Laboratory of Rare Earth Resources Utilization (RERU2013021).

Conflict of interest

The authors declare that they have no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuqing Qiao or Weimin Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Qiao, Y., He, L. et al. Study on LiFe1 − x Sm x PO4/C used as cathode materials for lithium-ion batteries with low Sm component. Ionics 21, 2119–2125 (2015). https://doi.org/10.1007/s11581-015-1397-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-015-1397-z

Keywords

Navigation