Skip to main content
Log in

Structure and Thickness Optimization of Active Layer in Nanoscale Organic Solar Cells

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

This paper presents the development of a two-dimensional model of multilayer bulk heterojunction organic nanoscale solar cells, consisting of the thickness of active layer and morphology of the device. The proposed model is utilized to optimize the device parameters in order to achieve the best performance using particle swarm optimization algorithm. The organic solar cells under research are from poly (3-hexylthiophene) and [6,6]-phenyl C61-butyric acid methyl ester type which are modelled to be investigated for performance enhancement. A three-dimensional fitness function is proposed involving domain size and active layer thickness as variables. The best results out of 20 runs of optimization show that the optimized value for domain size is 17 nm, while the short-circuit current vs. voltage characteristic shows a very good agreement with the experimental results obtained by previous researchers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rahmani R, Fard M, Shojaei A, Othman M, Yusof R (2011) Research and Development (SCOReD), 2011 IEEE Student Conference on IEEE, pp 46–51

  2. Rahmani R, Seyedmahmoudian M, Mekhilef S, Yusof R (2013) Am J Appl Sci 10(3)

  3. Seyedmahmoudian M, Mekhilef S, Rahmani R, Yusof R, Renani ET (2013) Energies 6(1):128

    Article  Google Scholar 

  4. Mahmodian M, Rahmani R, Taslimi E, Mekhilef S (2012) Proceedings of the International Conference on Future Environment and Energy, pp 26–28

  5. Krebs FC (2009) Solar Energy Mater Solar Cells 93:394. Si

    Article  CAS  Google Scholar 

  6. Kippelen B, Bredas JL (2009) Energy Environ Sci 2(3):251

    Article  CAS  Google Scholar 

  7. Guenes S, Neugebauer H, Sariciftci NS (2007) Chem Rev 107(4):1324

    Article  CAS  Google Scholar 

  8. Gonzalez-Valls I, Lira-Cantu M (2009) Energy Environ Sci 2(1):19

    Article  CAS  Google Scholar 

  9. Ameri T, Dennler G, Lungenschmied C, Brabec CJ (2009) Energy Environ Sci 2(4):347

    Article  CAS  Google Scholar 

  10. Helgesen M, Sondergaard R, Krebs FC (2010) J Mater Chem 20(1):36

    Article  CAS  Google Scholar 

  11. Mihailetchi VD, Koster L J A, Blom P W M, Melzer C, B. de Boer JK, Van Duren J, Janssen R A J (2005) Adv Funct Mater 15(5):795

    Article  CAS  Google Scholar 

  12. Erb T, Zhokhavets U, Gobsch G, Raleva S, Stuhn B, Schilinsky P, Waldauf C, Brabec CJ (2005) Adv Funct Mater 15(7):1193

    Article  CAS  Google Scholar 

  13. Li G, Shrotriya V, Huang JS, Yao Y, Moriarty T, Emery K, Yang Y (2005) Nat Mater 4(11):864

    Article  CAS  Google Scholar 

  14. Ma WL, Yang CY, Gong X, Lee K, Heeger AJ (2005) Adv Funct Mater 15(10):1617

    Article  CAS  Google Scholar 

  15. Kim Y, Cook S, Tuladhar SM, Choulis SA, Nelson J, Durrant JR, Bradley D D C, Giles M, McCulloch I, Ha CS, Ree M (2006) Nat Mater 5(3):197

    Article  CAS  Google Scholar 

  16. Yu G, Heeger AJ (1995) J Appl Phys 78(7):4510

    Article  CAS  Google Scholar 

  17. Kim JY, Lee K, Coates NE, Moses D, Nguyen TQ, Dante M, Heeger AJ (2007) Science 317(5835):222

    Article  CAS  Google Scholar 

  18. Yao Y, Hou J, Xu Z, Li G, Yang Y (2008) Adv Funct Mater 18(12):1783

    Article  CAS  Google Scholar 

  19. Kim JY, Kim SH, Lee HH, Lee K, Ma WL, Gong X, Heeger AJ (2006) Adv Mater 18(5):572

    Article  CAS  Google Scholar 

  20. Lee JU, Cirpan A, Emrick T, Russell TP, Jo WH (2009) J Mater Chem 19(10):1483

    Article  CAS  Google Scholar 

  21. Scharber MC, Wuhlbacher D, Koppe M, Denk P, Waldauf C, Heeger AJ, Brabec CL (2006) Adv Mater 18(6):789

    Article  CAS  Google Scholar 

  22. Dennler G, Scharber MC, Ameri T, Denk P, Forberich K, Waldauf C, Brabec CJ (2008) Adv Mater 20(3):579

    Article  CAS  Google Scholar 

  23. Al-Ibrahim M, Roth HK, Zhokhavets U, Gobsch G, Sensfuss S (2005) Solar Energy Mater Solar Cells 85(1):13

    CAS  Google Scholar 

  24. Krebs FC, Jorgensen M, Norrman K, Hagemann O, Alstrup J, Nielsen TD, Fyenbo J, Larsen K, Kristensen J (2009) Solar Energy Mater Solar Cells 93(4):422. Si

    Article  CAS  Google Scholar 

  25. Krebs FC, Alstrup J, Spanggaard H, Larsen K, Kold E (2004). Solar Energy Mater Solar Cells 83(2-3):293

    Article  CAS  Google Scholar 

  26. Jorgensen M, Norrman K, Krebs FC (2008) Solar Energy Mater Solar Cells 92(7):686

    Article  Google Scholar 

  27. Krebs FC, Spanggaard H (2005) Chem Mater 17(21):5235

    Article  CAS  Google Scholar 

  28. Nunzi JM (2002). C R Phys 3(4):523

    Article  CAS  Google Scholar 

  29. Jo J, Na SI, Kim SS, Lee TW, Chung Y, Kang SJ, Vak D, Kim DY. (2009) Adv Funct Mater 19(15):2398

    Article  CAS  Google Scholar 

  30. Shaheen SE, Brabec CJ, Sariciftci NS, Padinger F, Fromherz T, Hummelen JC (2001) Appl Phys Lett 78(6):841

    Article  CAS  Google Scholar 

  31. Miyanishi S, Tajima K, Hashimoto K (2009) Macromolecules 42(5):1610

    Article  CAS  Google Scholar 

  32. Watkins PK, Walker AB, G L B (2005) Verschoor, Nano Lett 5(9):1814

    Article  CAS  Google Scholar 

  33. Pettersson L A A, Roman L S, Inganas O (1999) J Appl Phys 86(1):487

    Article  CAS  Google Scholar 

  34. Moule AJ, Meerholz K (2007) Appl Phys B-Lasers Opt 86(4):721

    Article  CAS  Google Scholar 

  35. Buxton GA, Clarke N (2006) Phys Rev B 74(8)

  36. Buxton GA, Clarke N (2007) Model Simul Mater Sci Eng 15(2):13

    Article  CAS  Google Scholar 

  37. Maturova K, van Bavel SS, Wienk MM, Janssen R A J, Kemerink M (2009) Nano Lett 9(8):3032

    Article  CAS  Google Scholar 

  38. Barker JA, Ramsdale CM, Greenham NC (2003) Physical Review B 67(7)

  39. Koster L J A, Smits E C P, Mihailetchi V D, Blom P W M (2005) Phys Rev B 72(8)

  40. Hoppe H, Sariciftci NS (2006) J Mater Chem 16(1):45

    Article  CAS  Google Scholar 

  41. Monestier F, Simon JJ, Torchio P, Escoubas L, Florya F, Bailly S, De Bettignies R, Guillerez S, Defranoux C (2007) Solar Energy Mater Solar Cells 91(5):405. European Conference on Hybrid Organic Solar Cells (ECHOS 06) Jun 28-30, 2006 Paris, FRANCE EU Project MOLYCELL

    Article  CAS  Google Scholar 

  42. Losurdo M, Giangregorio M, Capezzuto P, Bruno G, De Rosa R, Roca F, Summonte C, Pla J, Rizzoli R (2002) J Vac Sci Technol a-Vac Surf Films 20(1):37

    Article  CAS  Google Scholar 

  43. Braun CL (1984) J Chem Phys 80(9):4157

    Article  CAS  Google Scholar 

  44. Goliber T, Perlstein J (1984) J Chem Phys 80(9):4162

    Article  CAS  Google Scholar 

  45. Scott JC, Malliaras GG (1999) Chem Phys Lett 299(2): 115

    Article  CAS  Google Scholar 

  46. Ruhstaller B, Carter SA, Barth S, Riel H, Riess W, Scott JC (2001) J Appl Phys 89(8):4575

    Article  CAS  Google Scholar 

  47. Scharfetter D, Gummel H (1969) Electron Devices, IEEE Trans 16(1):64

    Article  Google Scholar 

  48. Shaw PE, Ruseckas A, Samuel I D W (2008) Adv Mater 20(18):3516

    Article  CAS  Google Scholar 

  49. Kline RJ, McGehee MD, Kadnikova EN, Liu J, Frechet JM, Toney MF (2005) Macromolecules 38(8):3312

    Article  CAS  Google Scholar 

  50. Yan L, Mason M, Tang C, Gao Y (2001) Appl Surf Sci 175:412

    Article  Google Scholar 

  51. Kumar P, Jain SC, Kumar V, Chand S, Tandon RP (2009) Appl Phys a-Mater Sci Process 94(2):281

    Article  CAS  Google Scholar 

  52. S.Y. Eberhart R Evolutionary Computation, 2001. Proceedings of the 2001 Congress on, vol. 1 (IEEE), vol 1, pp 81–86

  53. Eberhart R, Shi Y, Kennedy J (2001) Swarm intelligence. Elsevier, Indianapolis, Indiana, USA

    Google Scholar 

  54. Rahmani R, Khairuddin A, Cherati SM, Pesaran HM (2010) IPEC, 2010 Conference Proceedings. IEEE, pp 134–139

  55. Rahmani R (2010) Optimization a wind farm using particle swarm optimization. Ph.D. thesis, Universiti Teknologi Malaysia, Faculty of Electrical Engineering

  56. Rahmani R, Othman MF, Yusof R, Khalid M (2012) J Theor Appl Inf Technol 46(2)

  57. Rahmani R, Mahmodian M, Mekhilef S, Shojaei A (2012) Research and Development (SCOReD), 2012 IEEE Student Conference on:109–113

  58. Rahmani R, Yusof R, Seyedmahmoudian M, Mekhilef S (2013) J Wind Eng Ind Aerodyn 123:163

    Article  Google Scholar 

  59. FA HK, Yusof R, Rahmani R, Ahmadi M (2013) J Nanomater 2013(2013):1

    Google Scholar 

  60. Rahmani R, Yusof R, Seyedmahmoudian M, Mekhilef S (2013) vol 7

  61. Karimi H, Yusof R, Rahmani R, Ahmadi MT (2013) J Nanomater 2013

  62. Seyedmahmoudian M, Mekhilef S, Rahmani R, Yusof R, Shojaei AA (2014) J Renew Sust Energ 6(2):023– 102

    Article  Google Scholar 

  63. Karimi H, Rahmani R, Mashayekhi R, Ranjbari L, Shirdel AH, Haghighian N, Movahedi P, Hadiyan M, Ismail R (2014) Beilstein J Nanotechnol 5(1):603

    Article  CAS  Google Scholar 

  64. Min Nam Y, Huh J, Ho Jo W (2010) Solar Energy Mater Solar Cells 94(6):1118

    Article  Google Scholar 

Download references

Acknowledgments

Authors would like acknowledge the financial support from the Research University grant of the Ministry of Higher Education (MOHE), Malaysia, under project Q.J130000.2523.04H99.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rasoul Rahmani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahmani, R., Karimi, H., Ranjbari, L. et al. Structure and Thickness Optimization of Active Layer in Nanoscale Organic Solar Cells. Plasmonics 10, 495–502 (2015). https://doi.org/10.1007/s11468-014-9833-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-014-9833-x

Keywords

Navigation