Skip to main content
Log in

Increased Damping of Plasmon Resonances in Gold Nanoparticles Due to Broadening of the Band Structure

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

For the first time, systematic investigations of the damping parameter A of gold nanoparticles as a function of photon energy are presented. A is an essential parameter that quantifies the size-dependent optical properties of metal nanoparticles in the dielectric function. To determine the damping parameter, the dephasing time T 2 of gold nanoparticles has been systematically determined under ultrahigh vacuum conditions as a function of photon energy. Dephasing times ranging from \(T_2 = 5\) fs to \(T_2 = 17\) fs were measured, and subsequently, the damping parameter has been extracted. We found a strong resonance-like damping of the plasmon resonance in the vicinity of the onset of the interband transition. While the damping parameter scatters statistically around a value of \(A = 0.19\) nm/fs for photon energies below \(h\nu = 1.70\) eV, it increases rapidly to 0.32 nm/fs for \(h\nu = 1.85\) eV. For higher photon energies, A decreases steadily to \(A = 0.24\) nm/fs at \(h\nu = 2.15\) eV. A comparison to former measurements as well as to theoretical predictions reveals surface scattering and a discretizing and broadening of the band structure that influences the interband transition as the most dominant size-dependent damping mechanisms. The latter, i.e., a damping via increased interband transitions, assumes a coherent damping process of the oscillating electrons and, as a consequence, the plasmon is treated as a two-level system. Thus, the results deliver new physical insight to the fundamental understanding of surface plasmons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bohren CF, Huffman DR (1983) Absorption and scattering of light by small particles. Wiley, New York

    Google Scholar 

  2. Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, Berlin

    Book  Google Scholar 

  3. Hubenthal F (2007) Ultrafast dephasing time of localized surface plasmon polariton resonance and the involved damping mechanisms in colloidal gold nanoparticles. Prog Surf Sci 82:378

    Article  CAS  Google Scholar 

  4. Ziegler T, Hendrich C, Hubenthal F, Vartanyan T, Träger F (2004) Dephasing times of surface plasmon excitation in Au nanoparticles determined by persistent hole burning. Chem Phys Lett 386:319

    Article  CAS  Google Scholar 

  5. Pinchuk A, von Plessen G, Kreibig U (2004) Influence of interband electronic transitions on the optical absorption in metallic nanoparticles. J Phys D: Appl Phys 37:3133

    Article  CAS  Google Scholar 

  6. Kreibig U (2008) Interface-induced dephasing of mie plasmon polaritons. Appl Phys B 93:79

    Article  CAS  Google Scholar 

  7. Hubenthal F, Hendrich C, Träger F (2010) Damping of the localized surface plasmon polariton resonance of gold nanoparticles. Appl Phys B 100:225

    Article  CAS  Google Scholar 

  8. Baida H, Billaud P, Marhaba S, Christofilos D, Cottancin E, Crut A, Lermé J, Maioli P, Pellarin M, Broyer M, Del Fatti N, Vallée F, Sánchez-Iglesias A, Pastoriza-Santos I, Liz-Marzán LM (2009) Quantitative determination of the size dependence of surface plasmon resonance damping in single Ag at SiO2 nanoparticles. Nano Lett 9:3463

    Article  CAS  Google Scholar 

  9. Novo C, Gomez D, Perez-Juste J, Zhang Z, Petrova H, Reismann M, Mulvaney P, Hartland GV (2006) Contributions from radiation damping and surface scattering to the linewidth of the longitudinal plasmon band of gold nanorods: a single particle study. Phys Chem Chem Phys 8:3540

    Article  CAS  Google Scholar 

  10. Muskens OL, Billaud P, Broyer M, Del Fatti N, Vallée F (2008) Optical extinction spectrum of a single gold nanoparticle: quantitative characterization of a particle and its local environment. Phys Rev B 78:205410

    Article  Google Scholar 

  11. Almeida E, Moreira ACL, Brito-Silva AM, Galembeck A, de Melo CP, de Menezes LS, de Araújo CB (2012) Ultrafast dephasing of localized surface plasmons in colloidal silver nanoparticles: the influence of stabilizing agents. Appl Phys B 108:9

    Article  CAS  Google Scholar 

  12. Habteyes TG, Dhuey S, Wood E, Gargas D, Cabrini S, Schuck J, Alivisatos AP, Leone SR (2012) Metallic adhesion layer induced plasmon damping and molecular linker as a nondamping alternative. ACS Nano 6:5702

    Article  CAS  Google Scholar 

  13. Anderson A, Deryckx KS, Xu XG, Steinmeyer G, Raschke MB (2010) Few-femtosecond plasmon dephasing of a single metallic nanostructure from optical response function reconstruction by interferometric frequency resolved optical gating. Nano Lett 10:2519

    Article  CAS  Google Scholar 

  14. Dondapati SK, Ludemann M, Müller R, Schwieger S, Schwemer A, Händel B, Kwiatkowski D, Djiango M, Runge E, Klar TA (2012) Voltage-induced adsorbate damping of single gold nanorod plasmons in aqueous solution. Nano Lett 12:1247

    Article  CAS  Google Scholar 

  15. Persson BNJ (1993) Polarizability of small spherical particles: influence of the matrix environment. Surf Sci 281:153

    Article  CAS  Google Scholar 

  16. Pinchuk A, Kreibig U (2003) Interface decay channel of particle surface plasmon resonances. New J Phys 5:151

    Article  Google Scholar 

  17. Pinchuk A, Kreibig U, Hilger A (2004) Optical properties of metallic nanoparticles: influence of interface effects and interband transitions. Surf Sci 557:269

    Article  CAS  Google Scholar 

  18. Yannouleas C, Broglia RA (1992) Landau damping and wall dissipation in large metal clusters. Ann Phys 217:105

    Article  CAS  Google Scholar 

  19. Dalacu D, Martinu M (2001) Optical properties of discontinuous gold films: finite-size effects. J Opt Soc Am B 18:85

    Article  Google Scholar 

  20. Berciaud S, Cognet L, Tamarat P, Lounis B (2005) Observation of intrinsic size effects in the optical response of individual gold nanoparticles. Nano Lett 5:515

    Article  CAS  Google Scholar 

  21. Hu M, Novo C, Funston A, Wang H, Staleva H, Zouc S, Mulvaney P, Xia Y, Hartland GV (2008) Dark-field microscopy studies of single metal nanoparticles: understanding the factors that influence the linewidth of the localized surface plasmon resonance. J Mater Chem 18:1949

    Article  CAS  Google Scholar 

  22. Hu M, Petrova H, Sekkinen AR, Chen J, McLellan JM, Li ZY, Marquez M, Li X, Xia Y, Hartland GV (2006) Optical properties of Au–Ag nanoboxes studied by single nanoparticle spectroscopy. J Phys Chem B 110:19923

    Article  CAS  Google Scholar 

  23. Anno A, Tanimoto M (2005) Size-dependent change in interband absorption and broadening of optical plasma-resonance absorption of indium particles. J Appl Phys 98:053510–053511

    Article  Google Scholar 

  24. Yeshchenko OA, Dmitruk IM, Alexeenko AA, Kotko AV, Verdal J, Pinchuk AO (2012) Size and temperature effects on the surface plasmon resonance in silver nanoparticles. Plasmonics 7:685–694. doi:10.1007/s11468-012-9359-z

    Article  CAS  Google Scholar 

  25. Hubenthal F (2011) Noble metal nanoparticles: synthesis and applications. In: Andrews DL, Scholes GD, Wiederrecht GP (eds) Comprehensive nanoscience and technology, vol 1. Academic, Oxford, pp 375–435

    Chapter  Google Scholar 

  26. Hubenthal F, Blázquez Sánchez D, Borg N, Schmidt H, Kronfeldt H-D, Träger F (2009) Tailor-made metal nanoparticles as SERS substrates. Appl Phys B 95:351

    Article  CAS  Google Scholar 

  27. Walter MJ, Lupton JM, Becker K, Feldmann J, Gaefke G, Höger S (2007) Simultaneous raman and fluorescence spectroscopy of single conjugated polymer chains. Phys Rev Lett 98:137401

    Article  Google Scholar 

  28. Donfack P, Ojha AK, Materny A (2012) Complex concentration dependence of SERS and UV-Vis absorption of glycine/Ag-substrates because of glycine-mediated Ag-nanostructure modifications. J Raman Spec 43:1183

    Google Scholar 

  29. Fu X, Jiang T, Zhao Q, Yin H (2012) Charge-transfer contributions in surface-enhanced Raman scattering from Ag, Ag2S and Ag2Se substrates. J Raman Spec 43:1191

    Article  CAS  Google Scholar 

  30. Ossig R, Kwon Y-H, Hubenthal F, Kronfeldt H-D (2012) Naturally grown Ag nanoparticles on quartz substrates as SERS substrate excited by a 488 nm diode laser system for SERDS. Appl Phys B 106:835

    Article  CAS  Google Scholar 

  31. Kwon Y-H, Ossig R, Hubenthal F, Kronfeldt H-D (2012) Influence of surface plasmon resonance wavelength on SERS activity of naturally grown silver nanoparticle ensemble. J Raman Spec 43:1385

    Article  CAS  Google Scholar 

  32. Grebel H (2004) Surface-enhanced raman scattering: phenomenological approach. J Opt Soc Am B 21:429

    Article  CAS  Google Scholar 

  33. Dong J, Qu S, Zhang Z, Liu M, Liu G, Yan X, Zheng H (2012) Surface enhanced fluorescence on three dimensional silver nanostructure substrate. J Appl Phys 11:093101

    Article  Google Scholar 

  34. Lin H, Centeno SP, Su L, Kenens B, Rocha S, Sliwa M, Hofkens J, Uji-i H (2012) Mapping of surface-enhanced fluorescence on metal nanoparticles using super-resolution photoactivation localization microscopy. Chem Phys Chem A 13:973–981

    Article  CAS  Google Scholar 

  35. Hernandez M, Recio G, Martin-Palma RJ, Garcia-Ramos JV, Domingo C, Sevilla P (2012) Surface enhanced fluorescence of anti-tumoral drug emodin adsorbed on silver nanoparticles and loaded on porous silicon. Nanoscale Res Lett 7:364

    Article  Google Scholar 

  36. Nadar L, Sayah R, Vocanson F, Crespo-Monteiro N, Boukenter A, Sao Joao S, Destouches N (2011) Influence of the reduction processes on the colour and photochromism of amorphous mesoporous TiO2 thin films loaded with silver salt. Photochem Photobiol Sci 10:1810–1816

    Article  CAS  Google Scholar 

  37. Crespo-Monteiro N, Destouches N, Nadar L, Reynaud S, Vocanson F, Michalon JY (2011) Irradiance influence on the multicolor photochromism of mesoporous TiO2 films loaded with silver nanoparticles. Appl Phys Lett 99:173106

    Article  Google Scholar 

  38. Stalmashonak A, Matyssek C, Kiriyenko O, Hergert W, Graener H, Seifert G (2010) Preparing large-aspect-ratio prolate metal nanoparticles in glass by simultaneous femtosecond multicolor irradiation. Optics Lett 35:1671

    Article  CAS  Google Scholar 

  39. Seifert G, Kaempfe M, Berg K-J, Graener H (2001) Production of dichroitic diffraction gratings in glasses containing silver nanoparticles via particle deformation with ultrashort laser pulses. Appl Phys B 73:355

    Article  CAS  Google Scholar 

  40. Hubenthal F, Morarescu R, Englert L, Haag L, Baumert T, Träger F (2009) Parallel generation of nanochannels in fused silica with a single femtosecond laser pulse: exploiting the optical near fields of triangular nanoparticles. Appl Phys Lett 95:063101

    Article  Google Scholar 

  41. Leiderer P, Bartels C, König-Birk J, Mosbacher M, Boneberg J (2004) Imaging optical near-fields of nanostructures. Appl Phys Lett 85:5370

    Article  CAS  Google Scholar 

  42. Morarescu R, Englert L, Kolaric B, Damman P, Vallée RAL, Baumert T, Hubenthal F, Träger F (2011) Tuning nanopatterns on fused silica substrates: a theoretical and experimental approach. J Mater Chem 21:4076

    Article  CAS  Google Scholar 

  43. Boneberg J, König-Birk J, Münzer H-J, Leiderer P, Shuford KL, Schatz GC (2007) Optical near-fields of triangular nanostructures. Appl Phys A 89:299

    Article  CAS  Google Scholar 

  44. Kerner G, Stein O, Asscher M (2006) Patterning thin metallic film via laser structured weakly bound template. Surf Sci 600:2091–2095

    Article  CAS  Google Scholar 

  45. Acosta-Zepeda C, García-Valenzuela A, Alonso-Huitrón JC, Haro-Poniatowski E (in press) Laser-induced patterning of silver thin films using interference effects. Appl Phys A. doi:10.1007/s00339-012-7207-9

  46. Haro-Poniatowski E, Fort E, Lacharme JP, Ricolleau C (2005) Patterning of nanostructured thin films by structured light illumination. Appl Phys Lett 87:143103

    Article  Google Scholar 

  47. Huang T, Browning LM, Xu XHN (2012) Far-field photostable optical nanoscopy (photon) for real-time super-resolution single-molecular imaging of signaling pathways of single live cells. NANOSCALE 4:2797

    Article  CAS  Google Scholar 

  48. Lamprecht B, Krenn JR, Leitner A, Aussenegg FR (1999) Particle-plasmon decay-time determination by measuring the optical near-fields autocorrelation: influence of inhomogeneous line broadening. Appl Phys B 69:223

    Article  CAS  Google Scholar 

  49. Benten W, Nilius N, Ernst N, Freund H-J (2005) Photon emission spectroscopy of single oxide-supported Ag-Au alloy clusters. Phys Rev B 72:045403

    Article  Google Scholar 

  50. Lombardi A, Loumaigne M, Crut A, Maioli P, Del Fatti N, Vallée F, Spuch-Calvar M, Burgin J, Majimel J, Tréguer-Delapierre M (2012) Surface plasmon resonance properties of single elongated nanoobjects: gold nanobipyramids and nanorods. Langmuir 28:9027

    Article  CAS  Google Scholar 

  51. Muskens OL, Christofilos D, Del Fatti N, Vallée F (2006) Optical response of a single noble metal nanoparticle. J Opt A Pure Appl Opt 8:S264

    Article  Google Scholar 

  52. Muskens OL, Bachelier G, Del Fatti N, Vallée F, Brioude A, Jiang X, Pileni M-P (2008) Quantitative absorption spectroscopy of a single gold nanorod. J Phys Chem C 112:8917

    Article  CAS  Google Scholar 

  53. Del Fatti N, Christofilos D, Vallée F (2008) Optical response of a single gold nanoparticle. Gold Bull 41(2):147

    Article  Google Scholar 

  54. Hendrich C, Bosbach J, Stietz F, Hubenthal F, Vartanyan T, Träger F (2003) A study by persistent hole burning. Appl Phys B 76:869

    Article  CAS  Google Scholar 

  55. Hubenthal F, Borg N, Träger F (2008) Optical properties and ultrafast electron dynamics in gold–silver alloy and core–shell nanoparticles. Appl Phys B 93:39

    Article  CAS  Google Scholar 

  56. Calvayrac F, Reinhard P, Suraud E, Ullrich C (2000) Nonlinear electron dynamics in metal clusters. Phys Rep 337:493

    Article  CAS  Google Scholar 

  57. Rubahn H-G (1997) Time constants for the decay of elementary optical excitations in surface bound Na clusters. Appl Surf Sci 109(110):575

    Article  Google Scholar 

  58. Hartland GV (2012) Optical studies of dynamics in noble metal nanostructures. Chem Rev 111:3858

    Article  Google Scholar 

  59. Zaremba E, Persson BNJ (1987) Dynamic polarizability of small metal particles. Phys Rev B 35:596

    Article  Google Scholar 

  60. Kreibig U, Genzel L (1985) Optical absorption of small metallic particles. Surf Sci 156:678

    Article  CAS  Google Scholar 

  61. Reinhard P-G, Brack M, Calvayrac F, Kohl C, Kümmel S, Suraud E, Ullrich CA (1999) Frequencies, times, and forces in the dynamics of Na clusters. Eur Phys J D 9:111

    Article  CAS  Google Scholar 

  62. Kawabata A, Kubo R (1966) Electronic properties of fine metallic particles. II. Plasma resonance absorption. J Phys Soc Jpn 21:1765

    Article  CAS  Google Scholar 

  63. Negre CFA, Sánchez CG (2010) Effect of molecular adsorbates on the plasmon resonance of metallic nanoparticles. Chem Phys Lett 494:255

    Article  CAS  Google Scholar 

  64. Ullrich CA, Reinhard P-G, Suraud E (1998) Electron emission from strongly excited metal clusters. Phys Rev A 57:1938

    Article  CAS  Google Scholar 

  65. Lermé J, Baida H, Bonnet C, Broyer M, Cottancin E, Crut A, Maioli P, Del Fatti N, Vallée F, Pellarin M (2010) Size dependence of the surface plasmon resonance damping in metal nanospheres. J Phys Chem Lett 1:2922

    Article  Google Scholar 

  66. Davletshin YR, Lombardi A, Cardinal MF, Juvé V, Crut A, Maioli P, Liz-Marzán LM, V.llée F, Del Fatti N, Kumaradas JC (2012) Quantitative study of the environmental effects on the optical response of gold nanorods. ACS Nano 6:8183

    Article  CAS  Google Scholar 

  67. Volmer M, Weber A (1925) Keimbildung in übersättigten gebilden. Z Phys Chem 119:277

    Google Scholar 

  68. Hubenthal F, Hendrich C, Ouacha H, Blázquez Sánchez D, Träger F (2005) Preparation of gold nanoparticles with narrow size distribution and well defined shapes. Int J Mod Phys B 19:2604

    Article  CAS  Google Scholar 

  69. Ouacha H, Hendrich C, Hubenthal F, Träger F (2005) Laser-assisted growth of gold nanoparticles: shaping and optical characterization. Appl Phys B 81:663

    Article  CAS  Google Scholar 

  70. Hubenthal F (2009) Nanoparticles and their tailoring with laser light. Eur J Phys 30:S49

    Article  CAS  Google Scholar 

  71. Hubenthal F, Hendrich C, Vartanyan TA, Träger F (2012) Determination of fundamental morphological parameters of supported nanoparticle ensembles: extracting the functional dependence between nanoparticle shape and size. Plasmonics. doi:10.1007/s11468-012-9408-7

    Google Scholar 

  72. Hubenthal F, Blázquez Sánchez D, Träger F (2012) Determination of morphological parameters of supported gold nanoparticles: comparison of AFM combined with optical spectroscopy and theoretical modeling versus TEM. Appl Sci 2:566

    Article  CAS  Google Scholar 

  73. Vartanyan T, Bosbach J, Stietz F, Träger F (2001) Theory of spectral hole burning for the study of ultrafast electron dynamics in metal nanoparticles. Appl Phys B 73:391

    Article  CAS  Google Scholar 

  74. Johnson PB, Christy RW (1972) Optical constants of noble metals. Phys Rev B 6:4370

    Article  CAS  Google Scholar 

  75. Crowell J, Ritchie RH (1968) Radiative decay of Coulomb-stimulated plasmons in spheres. Phys Rev 172:436

    Article  Google Scholar 

  76. Bosbach J, Hendrich C, Stietz F, Vartanyan T, Träger F (2002) Ultrafast dephasing of surface plasmon excitation in silver nanoparticles: influence of particle size, shape, and chemical surrounding. Phys Rev Lett 89:257404

    Article  CAS  Google Scholar 

  77. Kreibig U, Gartz M, Hilger A (1997) Mie resonances: sensors for physical and chemical cluster interface properties. Ber Bunsenges Phys Chem 101:1593

    Article  CAS  Google Scholar 

  78. Balamurugan B, Maruyama T (2005) Evidence of an enhanced interband absorption in Au nanoparticles: size-dependent electronic structure and optical properties. Appl Phys Lett 87:143105

    Article  Google Scholar 

  79. Rao CNR, Kulkarni GU, Thomas PJ, Edwards PP (2002) Size-dependent chemistry: properties of nanocrystals. Chem - A Eur J 8:29

    Article  Google Scholar 

  80. Schaaff TG, Shafigullin MN, Khoury JT, Vezmar I, Whetten RL, Cullen WG, First PN, Gutiérrez-Wing C, Ascensio J, Jose-Yacamán MJ (1997) Isolation of smaller nanocrystal Au molecules: robust quantum effects in optical spectra. J Phys Chem B 101:7885

    Article  CAS  Google Scholar 

  81. Hövel H, Fritz S, Hilger A, Kreibig U, Vollmer M (1993) Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping. Phys Rev B 48:18178

    Article  Google Scholar 

Download references

Acknowledgment

Financial support by the Deutsche Forschungsgemeinschaft, SPP 1093 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Hubenthal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hubenthal, F. Increased Damping of Plasmon Resonances in Gold Nanoparticles Due to Broadening of the Band Structure. Plasmonics 8, 1341–1349 (2013). https://doi.org/10.1007/s11468-013-9536-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-013-9536-8

Keywords

Navigation