Skip to main content
Log in

Higher Order Tunable Fano Resonances in Multilayer Nanocones

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We present a computational study of the plasmonic response of a gold–silica–gold multilayered nanostructure based on truncated nanocones. Symmetry breaking is introduced by rotating the nanostructure and by offsetting the layers. Nanocones with coaxial multilayers show dipole–dipole Fano resonances with resonance frequencies depending on the polarization of the incident light, which can be changed by rotating the nanostructure. By breaking the axial symmetry, plasmonic modes of distinct angular momenta are strongly mixed, which provide a set of unique and higher order tunable Fano resonances. The plasmonic response of the multilayered nanocones is compared to that of multishell nanostructures with the same volume and the former are discovered to render visible high-order dark modes and to provide sharp tunable Fano resonances. In particular, higher order tunable Fano resonances arising in non-coaxial multilayer nanocones can vary the plasmon lines at various spectral regions simultaneously, which makes these nanostructures greatly suitable for plasmon line shaping both in the extinction and near field spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. The Journal of Physical Chemistry B 107(3):668–677

    Article  CAS  Google Scholar 

  2. Banaee MG, Crozier KB (2010) Mixed dimer double-resonance substrates for surface-enhanced Raman spectroscopy. Acs Nano 5(1):307–314

    Article  Google Scholar 

  3. Liu C, Mi C, Li B (2011) The plasmon resonances of multilayered gold nanoshells and their potential bio-applications. Nanotechnology IEEE Transactions on 10(99):797–805

    Article  Google Scholar 

  4. Sheikholeslami S, Garcia-Etxarri A, Dionne JA (2011) Controlling the interplay of electric and magnetic modes via Fano-like plasmon resonances. Nano letters 11(9):2694–2701

    Article  Google Scholar 

  5. Knight MW, Halas NJ (2008) Nanoshells to nanoeggs to nanocups: optical properties of reduced symmetry core–shell nanoparticles beyond the quasistatic limit. New Journal of Physics 10:105006

    Article  Google Scholar 

  6. Mirin NA, Ali TA, Nordlander P, Halas NJ (2010) Perforated semishells: far-field directional control and optical frequency magnetic response. Acs Nano 4(5):2701–2712

    Article  CAS  Google Scholar 

  7. Yang ZJ, Zhang ZS, Zhang LH, Li QQ, Hao ZH, Wang QQ (2011) Fano resonances in dipole-quadrupole plasmon coupling nanorod dimers. Opt Lett 36(9):1542–1544

    Article  Google Scholar 

  8. Hao F, Nordlander P, Sonnefraud Y, Dorpe PV, Maier SA (2009) Tunability of subradiant dipolar and Fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing. Acs Nano 3(3):643–652

    Article  CAS  Google Scholar 

  9. Aizpurua J, Hanarp P, Sutherland D, Käll M, Bryant GW, Garcia de Abajo F (2003) Optical properties of gold nanorings. Phys Rev Lett 90(5):57401

    Article  CAS  Google Scholar 

  10. Grand J, Adam PM, Grimault AS, Vial A, Lamy De La Chapelle M, Bijeon JL, Kostcheev S, Royer P (2006) Optical extinction spectroscopy of oblate, prolate and ellipsoid shaped gold nanoparticles: experiments and theory. Plasmonics 1(2):135–140

    Article  CAS  Google Scholar 

  11. Khoury CG, Norton SJ, Vo-Dinh T (2009) Plasmonics of 3-D nanoshell dimers using multipole expansion and finite element method. Acs Nano 3(9):2776–2788

    Article  CAS  Google Scholar 

  12. Fan JA, Bao K, Wu C, Bao J, Bardhan R, Halas NJ, Manoharan VN, Shvets G, Nordlander P, Capasso F (2010) Fano-like interference in self-assembled plasmonic quadrumer clusters. Nano letters 10(11):4680–4685

    Article  CAS  Google Scholar 

  13. Luk’yanchuk B, Zheludev NI, Maier SA, Halas NJ, Nordlander P, Giessen H, Chong CT (2010) The Fano resonance in plasmonic nanostructures and metamaterials. Nat Mater 9(9):707–715

    Article  Google Scholar 

  14. Rahmani M, Lukiyanchuk B, Ng B, Liew Y, Hong M (2011) Generation of pronounced Fano resonances and tuning of subwavelength spatial light distribution in plasmonic pentamers. Opt Express 19(6):4949–4956

    Article  CAS  Google Scholar 

  15. Wang M, Cao M, Chen X, Gu N (2011) Subradiant plasmon modes in multilayer metal-dielectric nanoshells. J Phys Chem C 115(43):20920–20925

    Article  CAS  Google Scholar 

  16. Prodan E, Radloff C, Halas N, Nordlander P (2003) A hybridization model for the plasmon response of complex nanostructures. Science 302(5644):419–422

    Article  CAS  Google Scholar 

  17. Chen J, Wang P, Chen C, Lu Y, Ming H, Zhan Q (2011) Plasmonic EIT-like switching in bright-dark-bright plasmon resonators. Opt Express 19(7):5970–5978

    Article  Google Scholar 

  18. Mukherjee S, Sobhani H, Lassiter JB, Bardhan R, Nordlander P, Halas NJ (2010) Fanoshells: nanoparticles with built-in Fano resonances. Nano letters 10(7):2694–2701

    Article  CAS  Google Scholar 

  19. Zhang S, Bao K, Halas NJ, Xu H, Nordlander P (2011) Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed. Nano letters 11(4):1657–1663

    Article  CAS  Google Scholar 

  20. Fang Z, Cai J, Yan Z, Nordlander P, Halas NJ, Zhu X (2011) Removing a wedge from a metallic nanodisk reveals a Fano resonance. Nano letters 11(10):2694–2701

    Article  Google Scholar 

  21. Mirin NA, Bao K, Nordlander P (2009) Fano resonances in plasmonic nanoparticle aggregates†. J Phys Chem A 113(16):4028–4034

    Article  CAS  Google Scholar 

  22. Bardhan R, Mukherjee S, Mirin NA, Levit SD, Nordlander P, Halas NJ (2009) Nanosphere-in-a-nanoshell: a simple nanomatryushka†. J Phys Chem C 114(16):7378–7383

    Article  Google Scholar 

  23. Johnson PB, Christy R (1972) Optical constants of the noble metals. Physical Review B 6(12):4370–4379

    Article  CAS  Google Scholar 

  24. Qian J, Wang W, Li Y, Xu J, Sun Q (2012) Optical extinction properties of perforated gold-silica-gold multilayer nanoshells. J Phys Chem C 116(18):10349–10355

    Article  CAS  Google Scholar 

  25. Hu Y, Fleming RC, Drezek RA (2008) Optical properties of gold-silica-gold multilayer nanoshells. Opt Express 16(24):19579–19591

    Article  CAS  Google Scholar 

  26. Hu Y, Noelck SJ, Drezek RA (2010) Symmetry breaking in gold–silica–gold multilayer nanoshells. Acs Nano 4(3):1521–1528

    Article  CAS  Google Scholar 

  27. Wu DJ, Jiang SM, Liu XJ (2011) Tunable Fano resonances in three-layered bimetallic Au and Ag nanoshell. J Phys Chem C 115(48):23797–23801

    Article  CAS  Google Scholar 

  28. Ho JF, Luk’yanchuk B, Zhang JB (2012) Tunable Fano resonances in silver–silica–silver multilayer nanoshells. Applied Physics A: Materials Science & Processing 107(1):133–137

    Article  CAS  Google Scholar 

  29. Jian Z, Jian-jun L, Jun-wu Z (2011) Tuning the dipolar plasmon hybridization of multishell metal-dielectric nanostructure: gold nanosphere in a gold nanoshell. Plasmonics 6(3):527–534

    Article  Google Scholar 

  30. Hao F, Sonnefraud Y, Dorpe PV, Maier SA, Halas NJ, Nordlander P (2008) Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance. Nano letters 8(11):3983–3988

    Article  CAS  Google Scholar 

  31. Gallinet B, Martin OJF (2011) Relation between near-field and far-field properties of plasmonic Fano resonances. Opt Express 19(22):22167–22175

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Miano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, A.D., Miano, G. Higher Order Tunable Fano Resonances in Multilayer Nanocones. Plasmonics 8, 1023–1034 (2013). https://doi.org/10.1007/s11468-013-9505-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-013-9505-2

Keywords

Navigation