Skip to main content
Log in

Nonlinear Dependences of Optical Properties of Spherical Core–Shell Silver–Gold and Gold–Silver Nanoparticles on Their Parameters

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Modeling of nonlinear optical properties of spherical core–shell gold–silver and silver–gold nanoparticles (NPs) placed in water was carried out on the base of extended Mie theory. Efficiency cross sections of absorption σ abs, scattering σ sca, and extinction σ ext of radiation with wavelengths λ = 400 and 532 nm for core–shell NPs with constant core radii r 00 = 5, 10, 20, and 40 nm and in the range of relative radii r 1/r 00 = 1–8 were calculated (r 1 is the radius of shell). Dependences of optical properties of gold–silver and silver–gold NPs on increasing of core radius r 0 in the range 0 − r 1 under condition r 1 = const and increasing of r 0 under r 1 − r 0 = const were investigated. Results show the nonlinear behavior of optical properties of core–shell gold–silver and silver–gold NPs on radiation wavelengths (optical indexes of metals), different core and shell radii, and their correlation, on relative NP radii r 1/r 00. An increase and decrease of absorption, scattering, and extinction efficiency cross sections of core–shell NPs with changing of wavelengths, core and shell radii, and relative NP radii r 1/r 00 are established. These dependences can be used for experimental investigation of the interesting first stages of shell formation on core and optical determination of core–shell NP parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bohren CF, Huffman DR (1983) Absorption and scattering of light by small particles. Wiley, New York

    Google Scholar 

  2. Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, Heidelberg

    Book  Google Scholar 

  3. Pustovalov VK, Babenko VA (2004) Optical properties of gold nanoparticles at laser radiation wavelengths for laser applications in nanotechnology and medicine. Laser Phys Lett 1:516–520

    Article  CAS  Google Scholar 

  4. Lee K-S, El-Sayed M (2006) Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape and metal composition. J Phys Chem 110:19220–19225

    CAS  Google Scholar 

  5. Kalele S, Gosavi SW, Urban J, Kulkarni SK (2006) Nanoshell particles: synthesis, properties and applications. Curr Sci 91:1038–1052

    CAS  Google Scholar 

  6. Cortie MB, McDonagh AM (2011) Synthesis and optical properties of hybrid and alloy plasmonic nanoparticles. Chem Rev 111:3713–3735

    Article  CAS  Google Scholar 

  7. Sonay AY, Çağlayan AB, Çulha M (2012) Synthesis of peptide mediated Au core–Ag shell nanoparticles as surface-enhanced Raman scattering labels. Plasmonics 7:77–86

    Article  CAS  Google Scholar 

  8. Jones MR, Osberg KD, Macfarlane RJ, Langille MR, Mirkin CA (2011) Templated techniques for the synthesis and assembly of plasmonic nanostructures. Chem Rev 111:3736–3827

    Article  CAS  Google Scholar 

  9. Major KJ, De C, Obare SO (2009) Recent advances in the synthesis of plasmonic bimetallic nanoparticles. Plasmonics 4:61–78

    Article  CAS  Google Scholar 

  10. Steinbruck A, Csaki A, Festag G, Fritzsche W (2006) Preparation and optical characterization of core-shell bimetal nanoparticles. Plasmonics 1:79–85

    Article  Google Scholar 

  11. Pyne S, Sarkar P, Basu S, Sahoo PG, Kumar Bhui D, Bar H, Misra A (2011) Synthesis and photo physical properties of Au @ Ag (core @ shell) nanoparticles disperse in poly vinyl alcohol matrix. Nanopart Res 13:1759–1767

    Article  CAS  Google Scholar 

  12. Shankar C, Dao ATN, Singh P, Higashimine K, Mott DM, Maenosono S (2012) Chemical stabilization of gold coated by silver core-shell nanoparticles via electron transfer. Nanotechnology 23:245704

    Article  Google Scholar 

  13. Chen Y, Wu H, Li Z, Wang P, Yang L, Fang Y (2012) The study of surface plasmon in Au/Ag core/shell compound nanoparticles. Plasmonics 7:509–513

    Article  CAS  Google Scholar 

  14. Mott D, Lee J-D, Thi Bich Thuy N, Aoki Y, Singh P, Maenosono S (2011) A study on the plasmonic properties of silver core gold shell nanoparticles: optical assessment of the particle structure. Appl Phys 50:065004

    Google Scholar 

  15. Yang Y-Y, Csapó E, Zhang Y-L, Süßmann F et al (2012) Optimization of the field enhancement and spectral bandwidth of single and coupled bimetal core–shell nanoparticles for few-cycle laser applications. Plasmonics 7:99–106

    Article  CAS  Google Scholar 

  16. Hubenthal F, Ziegler T, Hendrich C, Alschinger M, Trager F (2005) Tuning the surface plasmon resonance by preparation of gold-core/silver-shell and alloy nanoparticles. Europ Phys J D 34:165–168

    Article  CAS  Google Scholar 

  17. Steinbrück A, Csaki A, Ritter K, Leich M, Kohler J, Fritzsche W (2009) Gold and gold-silver core-shell nanoparticles constructs with defined size based on DNA hybridization. J Nanopart Res 11:623–633

    Article  Google Scholar 

  18. Hubenthal F, Borg N, Trager F (2008) Optical properties and ultrafast dynamics in gold-silver alloy and core-shell nanoparticles. Appl Phys B 93:39–45

    Article  CAS  Google Scholar 

  19. Companini G, Messina E, Puglisi O, Cataliotti R, Nicolosi V (2008) Spectroscopic evidence of a core-shell structure in the earlier formation stages of Au-Ag nanoparticles by pulse laser ablation in water. Chem Phys Lett 457:386–390

    Article  Google Scholar 

  20. Pustovalov VK, Astafyeva LG, Fritzsche W (2012) Optical properties of core–shell gold–silver and silver–gold nanoparticles for near UV and visible radiation wavelengths. Plasmonics 7:469–474

    Article  CAS  Google Scholar 

  21. Csaki A, Schneider T, Wirth J, Jahr N, Steinbrück A, Stranik O, Garwe F, Müller R, Fritzsche W (2011) Molecular plasmonics: light meets molecules at the nanoscale. Philosoph Trans A 369:3483–3496

    Article  CAS  Google Scholar 

  22. Wang J, Byrne JD, Napier ME, De Simone JM (2011) More effective nanomedicines through particle design. Small 7:1919–1931

    Article  CAS  Google Scholar 

  23. Panfilova E, Shirokov A, Khlebtsov B, Matora L (2012) Multiplexed dot immunoassay using Ag nanocubes, Au/Ag alloy nanoparticles, and Au/Ag nanocages. Nano Res 5:124–134

    Article  CAS  Google Scholar 

  24. Cheng F-Y, Chen C-T, Yeh C-S (2009) Comparative efficiencies of photothermal destruction of malignant cells using antibody-coated silica @ Au nanoshells, hollow Au/Ag nanospheres and Au nanorods. Nanotechnology 20:425104

    Article  Google Scholar 

  25. Pustovalov V, Astafyeva L, Jean B (2009) Computer modeling of the optical properties and heating of spherical gold and silica-gold nanoparticles for laser combined imaging and photothermal treatment. Nanotechnology 20:225105

    Article  CAS  Google Scholar 

  26. Pustovalov V, Astafyeva L, Galanzha E, Zharov VP (2010) Thermo-optical analysis and selection of the properties of absorbing nanoparticles for laser applications in cancer nanotechnology. Cancer Nanotechnol 1:35–46

    Article  CAS  Google Scholar 

  27. Steinbrück A, Stranik O, Csaki A, Fritzsche W (2011) Sensoric potential of gold-silver core-shell nanoparticles. Anal Bional Chem 401:1241–1249

    Article  Google Scholar 

  28. Bickford L, Sun J, Fu K, Lewinski N, Nammalvar V, Chang J, Drezek R (2008) Enhanced multi-spectral imaging of live breast cancer cells using immunotargeted gold nanoshells and two-photon excitation microscopy. Nanotechnology 19:315102

    Article  Google Scholar 

  29. Dallaire A-M, Rioux D, Rachkov A, Patkovsky S, Meunier M (2012) Laser-generated Au-Ag nanoparticles for plasmonic nucleic acid sensing. Phys Chem C 116:11370–11377

    Article  CAS  Google Scholar 

  30. Aden AL, Kerker MJ (1951) Scattering of electromagnetic waves from two concentric spheres. J Appl Phys 22:1242–1246

    Article  Google Scholar 

  31. Babenko VA, Astafyeva LG, Kuzmin VN (2003) Electromagnetic scattering in disperse media. Inhomogeneous and anisotropic particles. Springer–Praxis, Berlin

    Google Scholar 

  32. Cattawar GW, Hood DA (1976) Electromagnetic scattering from a spherical polydispersion of a coated spheres. Appl Opt 15:1996–1999

    Article  Google Scholar 

  33. Bhandari R (1985) Scattering coefficients for a multilayered sphere: analytic expressions and algorithms. Appl Opt 24:1960–1967

    Article  CAS  Google Scholar 

  34. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379

    Article  CAS  Google Scholar 

  35. Hirch LR, Sershen SR, Rivera B, Price RE, Hazle JD, Halas NJ (2003) Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. PNAS 100:13549–13554

    Article  Google Scholar 

  36. Zhang LI, Wang H (2011) Cupruos oxide nanoshells with geometrically tunable optical properties. ACS Nano 5:3257–3267

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was partially support by the scientific program “Convergence” (2.04.02) for VKP. The authors thank I. Rasich for her assistance with computer calculations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor K. Pustovalov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pustovalov, V.K., Fritzsche, W. Nonlinear Dependences of Optical Properties of Spherical Core–Shell Silver–Gold and Gold–Silver Nanoparticles on Their Parameters. Plasmonics 8, 983–993 (2013). https://doi.org/10.1007/s11468-013-9500-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-013-9500-7

Keywords

Navigation